
129 Lecture Notes
More on Dirac Equation

1 Ultra-relativistic Limit

We have solved the Diraction in the Lecture Notes on Relativistic Quan-
tum Mechanics, and saw that the upper (lower) two components are large
(small) in the non-relativistic limit for positive energy solutions. They are
switched for negative energy solutions which represent (the absence of) the
anti-particle. It is also useful to consider the ultra-relativistic limit E � m
(or m→ 0) in order to discuss high-energy processes and massless neutrinos.

We start with the Dirac equation

ih̄
∂

∂t
ψ = Hψ = [c~α · ~p+mc2β]ψ. (1)

We solved it using the two-component eigenvectors of ~σ · ~p

~σ · ~pχ+(~p) = ~σ · ~p
(

cos θ
2

sin θ
2
eiφ

)
= +|~p|χ+(~p), (2)

~σ · ~pχ−(~p) = ~σ · ~p
(
− sin θ

2
e−iφ

cos θ
2

)
= −|~p|χ−(~p). (3)

The positive energy solutions are ψ(~x, t) = u±(p)e−ipµxµ/h̄,

u+(p) =

 √
E+mc2

2mc2
χ+(~p)√

E−mc2

2mc2
χ+(~p)

 , u−(p) =

 √
E+mc2

2mc2
χ−(~p)

−
√

E−mc2

2mc2
χ−(~p)

 , (4)

while the negative energy solutions are ψ(~x, t) = v±(p)e+ipµxµ/h̄,

v+(p) =

 √
E−mc2

2mc2
χ+(~p)√

E+mc2

2mc2
χ+(~p)

 , v−(p) =

 −
√

E−mc2

2mc2
χ−(~p)√

E+mc2

2mc2
χ−(~p)

 . (5)

It is easy to check that they are helicity eigenstates. We have seen before
that the total angular momentum is given by ~J = ~x × ~p + h̄

2
~Σ, which is

conserved, while the orbital and spin angular momenta are individually not
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conserved. In order to seperate the spin degree of freedom, it is useful to
project it along the direction of the momentum,

~p · ~J = ~p · h̄
2
~Σ. (6)

The orbital angular momentum drops out and we single out the spin. The
helicity is defined by

h =
~p · ~J
|~p|

=
h̄

2

~p · ~Σ
|~p|

. (7)

The positive helicity +h̄/2 is called “right-handed,” while the negative he-
licity −h̄/2 “left-handed.” It is important to note that the helicity is frame-
dependent if the particle has a (not matter how small) a finite mass. If the
mass is finite, in principle you can go faster than it an look back. The mo-
mentum appears to go the opposite direction in your rest frame, while the
spin remains the same. Therefore, you would observe the opposite helicity.
On the other hand, if the particle is massless, you can never pass it, and
hence the helicity is frame-independent.

Now we take the ultra-relativistic limit E � m. Up to the normalization

factor of
√
E/mc2, we find

u+(p) ∝
(
χ+(~p)
χ+(~p)

)
, u−(p) ∝

(
χ−(~p)
−χ−(~p)

)
, (8)

v+(p) ∝
(
χ+(~p)
χ+(~p)

)
, v−(p) ∝

(
−χ−(~p)
χ−(~p)

)
. (9)

They have simplified dramatically. In particular, by introducing a matrix

γ5 =

(
0 I
I 0

)
, (10)

we find they are all eigenstates of this matrix,

γ5u±(p) = ±u±(p), γ5v±(p) = ±v±(p). (11)

The eigenvalue of γ5 is called “chirality,” originating from a Greek word
that means “hand.” The name suggests that it is closely related to the
handedness, namely the helicity of the particle. Indeed, what we see here is
that, in the limit of E � m or massless limit, the chirality and the helicity
are in one-to-one correspondence.
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The chirality is a good quantum number if the particle is massless. This
is because γ5 commutes with ~α, while anti-commutes with β. Therefore,

ih̄
d

dt
γ5 = [γ5, H] = 2mc2γ5β, (12)

and hence the chirality is conserved only for a massless fermion. On the other
hand, you can show that γ5 is Lorentz-invariant. This point is consistent
with the previous discussion that the helicity is frame-independent only for
a massless particle. If the particle is massless, the helicity is in one-to-one
correspondence with the chirality, which is Lorentz-invariant.

2 Complete Set of Dirac Matrices

It is useful to make the Dirac equation manifestly Lorentz-covariant. One
good way to start is to rewrite it in the following manner(

ih̄
∂

c∂t
+ ih̄~α · ~∇−mcβ

)
ψ = 0. (13)

Because the mass is a Lorentz scalar, it is natural to multiply the equation
by β to make it purely a constant (recall β2 = I),(

ih̄β
∂

c∂t
+ ih̄β~α · ~∇−mc

)
ψ = 0. (14)

This form suggests that γµ = (β, β~α) transforms as a Lorentz vector. Then
the equation has the manifestly Lorentz-covariant form

(iγµ∂µ −mc)ψ = 0. (15)

The explicit forms for gamma-matrices are easily obtained from β and ~α,

γ0 =

(
I 0
0 −I

)
, γi =

(
0 ~σ
−~σ 0

)
. (16)

Note that the gamma matrices all anti-commute,

{γµ, γν} = γµγν + γνγµ = 2gµν . (17)
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Moreover, γ5 anti-commutes with all other gamma matrices,

{γ5, γ
µ} = 0. (18)

Because these are four-by-four matrices, it is a useful question to ask (and
we will use it in the theory of weak interactions) what the complete set of
Dirac matrices is. Obviously, there are sixteen linearly independent matri-
ces. They are grouped together according to their Lorentz transformation
properties as

1 Scalar (19)

γµ Vector (20)

σµν =
i

2
[γµ, γν ] Tensor (21)

γµγ5 Axial-Vector (22)

γ5 Pseudo-Scalar. (23)

Note that the tensor has only six (4C2 = 6) matrices becuase of the anti-
symmetry of two indices. The total number is 1 + 4 + 6 + 4 + 1 = 16 as
desired. The axial-vector differs from the vector in terms of the parity, and
so does pseudo-scalar from scalar. We will discuss parity in the next section.

3 Parity

How do we define parity on the Dirac wavefunction? The key is to make sure
that the Dirac equation remains the same before and after the parity. We
also include the electromagnetic potential to help us interpret the physical
meaning of it.

The Dirac equation in its covariant form in the presence of the electro-
magnetic potential is(

iγµ(∂µ + i
e

c
Aµ(~x, t))−mc

)
ψ(~x, t) = 0. (24)

What we would like to achive is to flip the space ~x → −~x. Because the
equation is supposed to hold at any position in space, we can simply subsitute
−~x into ~x, and we find(

iγ0(∂0 + i
e

c
A0(−~x, t)) + iγi(−∂i + i

e

c
Ai(−~x, t))−mc

)
ψ(−~x, t) = 0. (25)
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Here I used the fact that the derivative also changes the sign under this
substitution. The question is to bring this back to the form as close as
possible to the original equation. Thanks to the anti-commutation property
of gamma matrices, it is easy to see that γ0γiγ0 = −γi. Therefore,(

iγ0(∂0 + i
e

c
A0(−~x, t)) + iγ0γiγ0(∂i − i

e

c
Ai(−~x, t))−mc

)
ψ(−~x, t) = 0.

(26)
By multiplying the equation by γ0 from the left,(

iγ0(∂0 + i
e

c
A0(−~x, t)) + iγi(∂i − i

e

c
Ai(−~x, t))−mc

)
γ0ψ(−~x, t) = 0.

(27)
Therefore, γ0ψ(−~x, t) almost satisfies the same equation as before, except
the sign of the vector potential. Indeed, we have forgotten to change the
sign of the vector potential! Under parity, the electric field should change

its sign, while ~E = −~∇φ− ~̇A. Therefore the vector potential should change
the sign under the parity. It is also consistent with the axial-vector nature
of the magnetic field, ~B = ~∇ × ~A which changes the sign twice. Now that
we remember this, the correct parity-transformed Dirac equation is(

iγ0(∂0 + i
e

c
A0(−~x, t)) + iγi(∂i + i

e

c
Ai(−~x, t))−mc

)
γ0ψ(−~x, t) = 0,

(28)
which is of exactly the same form as the original equation. In summary, the
parity transformation is given by

ψ(~x, t) → γ0ψ(−~x, t), (29)

A0(~x, t) → A0(−~x, t), (30)

Ai(~x, t) → −Ai(−~x, t). (31)

The immediate consequence of this is the parity eigenvalues of the particle
and anti-particle at rest. For the particle at rest ~p = 0, u±(p) are non-
vanishing only in the first two components, while for the anti-particle at rest
we use the negative-energy solutions v±(p) which are non-vanishing only in
the lower two components. Because γ0 = diag(1, 1,−1,−1), it follows that
the particle at rest has parity eigenvalue +1, while the anti-particle at rest
has parity eigenvalue −1. Of course, the distinction between particle and
anti-particle is a convention. If you change your convention that you call
positrons as particles and electrons anti-particles, even though it is awfully
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inconvenient (we live in the world of anti-matter in that case!), the positron
has the even parity while the electron odd. It may sound troublesome that
the parity eigenvalue is convention dependent, but it turns out the physical
quantities won’t.

To do the reality check of the parity eigenvalue we just found, let us
consider the charged pion π+ = ud̄. There is no orbital angular momentum
L = 0, and the spins are anti-aligned S = 0 to form spin-zero meson. Under
parity, u, being a particle, returns a positive sign, while d̄, being an anti-
particle, returns a negative sign. Therefore the pion has the odd parity 0−,
as we talked about already several times. Note that even if you switch to
the other convention, you still get the overall minus sign. The spin parallel
counter part ρ+ = ud̄ also has the same odd parity: 1−.

In general, if the meson has the orbital angular momentum L between
the quark and the anti-quark, it gives the parity (−1)L from the spherical
harmonics. In addition, either quark or anti-quark, depending on your con-
vention, gives the minus sign, and hence the parity eigenvalue of the meson
is (−1)L+1. Using the parity and the spin of the meson, you can figure out
the orbital angular momentum. For example, when L = 1, S = 0, the spin
must be J = 1, while when S = 1 for the same L, the spin can be J = 0, 1, 2
(addition of the angular momentum 1 and 1). All of them must share the
same positive parity. Indeed, the I = 1 mesons b1(1235) are the L = 1, S = 0
case, and a0(1450), a1(1260), and a2(1320) are the L = 1, S = 1 cases. They
are all parity even. Look at http://pdg.lbl.gov/2002/quarkmodrpp.pdf

for a table of mesons, their quantum numbers, and their spectroscopic clas-
sifications.

It is also important to note that γ5 is parity-odd, and hence pseudo-scalar.
It follows simply because γ5 anti-commutes with γ0.

4 Charge Conjugation

Another important symmetry is the interchange of particles and anti-particles.
The world of anti-matter would look just the same as ours, made up of
anti-nucleons and positrons forming anti-atoms. Indeed, Athena experiment
at CERN (http://athena.web.cern.ch/athena) has produced many anti-
hydrogen atoms. The overall switch of particles and anti-particles is called
“charged conjugation” C, because that would flip the charges such as electric
charge, strangeness, baryon number and so on.
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What we want to do then is to find a way to change the Dirac equation
such that the positive- and negative-energy solutions are interchanged while
the form of the equation remains the same. The good guess is that it involves
a complex conjugation so that e−iEt/h̄ becomes e+iEt/h̄ and vice versa. Given
this guess, let us take the complex conjugate of the whole equation,(

−iγµ∗(∂µ − i
e

c
Aµ(~x, t))−mc

)
ψ∗(~x, t) = 0. (32)

The obvious problem is that −iγµ∗. We have to bring them back to iγµ.
Recall that γ0,1,3 are all real, while γ2 is imaginary. The only one that

changes its sign under the complex conjugation is therefore γ2. Using the
anti-commutation of gamma matrices, we can write the general equation

(iγ2)γµ∗(iγ2) = −γµ. (33)

Note that iγ2 is hermitean and unitarity. By multiplying the equation by
(iγ2) from the left, we find(

iγµ(∂µ − i
e

c
Aµ(~x, t))−mc

)
iγ2ψ∗(~x, t) = 0. (34)

Therefore the equation is the same as before, except that the sign of the
electromagnetic potential is the opposite. Well, under the charge conjugation,
we should have also flipped the sign of the electromagnetic potential! Doing
so, the Dirac equation maintains exactly the same form as before. In other
words, the electromagnetic potential is odd under the charged conjugation,
and the photon has the odd eigenvalue under C. You can also check that
the positive- and negative-energy solutions are interchanged by ψ(~x, t) →
iγ2ψ∗(~x, t).

It is interesting to apply the charge conjugation to mesons. Some particles
are eigenstates of the charge conjugation, namely that the particle and its
anti-particle are the same. The photon was indeed a good example, C|γ〉 =
−|γ〉. In order for this to be possible the particle must be neutral under all
charges. Another such example is π0. Its wave function consistent with I = 1
and S = 0 is

|π0〉 = | 1√
2
(uū− dd̄)

1√
2
(↑↓ − ↓↑)〉 =

1

2
|u↑ū↓ − u↓ū↑ − d↑d̄↓ + d↓d̄↑〉. (35)

Under the charge conjugation, it becomes

C|π0〉 =
1

2
|ū↑u↓ − ū↓u↑ − d̄↑d↓ + d̄↓d↑〉. (36)
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We want to go back to the original order of quark and anti-quark, but being
fermions, their interchange produces a minus sign.

C|π0〉 =
1

2
| − u↓ū↑ + u↑ū↓ + d↓d̄↑ − d↑d̄↓〉. (37)

This is the same as the original wave function, and hence C|π0〉 = +|π0〉.
Note that the minus sign from the Fermi statistics was compensated by
the anti-symmetry of the spin wave function. In other words, the overall
sign was determined by (−1)S. If we apply the same method to |ρ0〉 =
| 1√

2
(u↑ū↑ − d↑d̄↑)〉, we find

C|ρ0〉 = C| 1√
2
(u↑ū↑−d↑d̄↑)〉 = | 1√

2
(ū↑u↑−d̄↑d↑)〉 = |− 1√

2
(u↑ū↑−d↑d̄↑)〉 = −|ρ0〉.

(38)
When applied to mesons with non-zero orbital angular momentum, there is
an additional sign of (−1)L, and hence the overall charged conjugation is
given by (−1)L+S. The table of mesons indeed shows the different charged
conjugation quantum numbers between S = 0 and S = 1 states of the same
flavor compositions and the same orbital angular momenta.

The reality check here is that π0 → γγ decay is allowed as observed. The
initial state is even under C, while the final state has two C-odd photons,
and hence again even under C. On the other hand, ρ0 → γγ, even though it
preserves all other conserved quantities, is forbidden because of the charge
conjugation invariance. It can decay into three photons (extremely rare) but
not into two.

The same analysis applies to the positronium, the bound state of e+ and
e− by a simple Coulomb attraction. After separating the center-of-mass mo-
tion, the system is the same as the hydrogen atom of reduced mass me/2.
The ortho and para positronia correspond to S = 0 and S = 1 combina-
tions, which are split only by the hyperfine interaction. But they decay in
completely different ways. S = 0 state can decay into two photons quickly.
However S = 1 state must decay into three photons, and the decay rate is
suppressed by three powers of the fine-structure constant. This difference
can be exploited in the condensed matter experiments using the positron
annihilation. Using the emission of photons, one can study both the spatial
and spin distribution of electrons in a given material.
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