
129A Lecture Notes
Quantum ElectroDynamics

1 Quantum ElectroDynamics

The true quantum mechanical and relatistic theory of electromagnetism is
called Quantum ElectroDynamics, or QED for shot. It combines Dirac equa-
tion to describe electron (and of course positron) and Maxwell equation for
photon. The actual calculations of quantum mechanical amplitudes are based
on perturbation theory, organized in terms of Feynman diagrams. Introduc-
ing QED from the first principle takes a full semester (229A in the case of
Berkeley graduate curriculum) and we cannot go through it in this course.
Instead, I’d like to give you rough idea on how the theory works, without
getting into hardcore formalism.

2 Photons

Early development of quantum mechanics was led by the fact that electro-
magnetic radiation was quantized: photons. Here we show that the Maxwell
field can be regarded as a collection of harmonic oscillators. Details of this
discussion are not used later in this course. This section is for only those of
you who are interested in seeing this explicitly.

2.1 Classical Maxwell Field

The vector potential ~A and the scalar potential φ are combined in the four-
vector potential

Aµ = (φ, ~A). (1)

Throughout the lecture notes, we use the convention that the metrix gµν =

diag(+1,−1,−1,−1) and hence Aµ = gµνA
ν = (φ,− ~A). The four-vector

coordinate is xµ = (ct, ~x), and correspondingly the four-vector derivative is

∂µ = (1
c

∂
∂t
, ~∇). The field strength is defined as Fµν = ∂µAν − ∂νAµ, and

hence F0i = ∂0Ai − ∂iA0 = − ~̇A/c − ~∇φ = ~E, while Fij = ∂iAj − ∂jAi =

−~∇iA
j + ~∇jA

i = −εijk ~Bk.
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In the unit we have been using where the Coulomb potential is QQ′/4πr
without a factor of 1/ε0, the action for the Maxwell field is

S = −1

4

∫
dtd~x F µνFµν − Aµj

µ =
1

2

∫
dtd~x

(
~E2 − ~B2

)
. (2)

The gauge invariance of the Maxwell field is that the vector potential
Aµ and Aµ + ∂µω (where ω is an arbitrary function of spacetime) give the
same field strength and hence the same action. Using this invariance, one
can always choose a particular gauge. For most purposes of non-relativistic
systems encountered in atomic, molecular, condensed matter, nuclear and
astrophysics, Coulomb gauge is the convenient choice, while for highly rela-
tivistic systems such as in high-energy physics. We use Lorentz gauge in this
lecture note:

∂µA
µ =

1

c

∂

∂t
φ+ ~∇ · ~A = 0. (3)

Because of this condition, we can simplify the action. The original action is

FµνF
µν = (∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

= 2∂µAν(∂
µAν − ∂νAµ)

= 2∂µAν∂
µAν − 2(∂νAν)(∂µA

µ) + surface terms. (4)

Using the Lorentz gauge condition, we can drop the second term in the last
line. Therefore, the Maxwell action Eq. (2) becomes

S = −1

2

∫
dtd~x ∂µAν∂

µAν . (5)

2.2 Quantization

In order to quantize the Maxwell field, we first determine the “canonically
conjugate momentum” for the vector potential Aµ. Following the definition
pi = ∂L/∂q̇i in particle mechanics, we define the canonically conjugate mo-
mentum from the simplified action Eq. (5),

πµ =
∂L
∂Ȧµ

= − 1

c2
Ȧµ. (6)

Following the normal canonical commutation relation [qi, pj] = ih̄δij, we set
up the equal-time commutation relation

[Aµ(~x, t), πν(~y, t)] = [Aµ(~x, t),− 1

c2
Ȧν(~y, t)] = ih̄δµ

ν δ(~x− ~y). (7)
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To satisfy this commutation relation, we introduce the photon creation and
annihilation operators

[aµ(p), aν†(q)] = −gµνδ~p,~q, (8)

and expand the vector potential and its time derivative as

Aµ(~x) =

√
h̄c2

2L3

∑
~p

1
√
ωp

(aµ(p)e−ipµxµ/h̄ + aµ†(p)eipµxµ/h̄). (9)

Here, ωp = Ep/h̄ = c|~p|/h̄ is the angular frequency for the photon. L is
the size of the box with periodic boundary condition. You can check that
this momentum-mode expansion together with the equal-time commutation
relation Eq. (8) reproduces the canonical commutation relation Eq. (7) as
follows.

[Aµ(~x, t), Ȧν(~y, t)]

=
h̄c2

2L3

∑
~p,~q

(−i)[aµ(p)e−ipµxµ/h̄ + aν†(p)eipµxµ/h̄, aµ(p)e−iqµyµ/h̄ − aν†(q)eiqµyµ/h̄]

=
h̄c2

2L3
i
∑
~p

(−gµν)(eip·(~x−~y) + e−ip·(~x−~y))

= −h̄c2igµνδ(~x− ~y). (10)

At the last step, we used the correspondence in the large volume limit
∑

~p =
L3

∫
d~p/(2πh̄)3.

The problem with what we have done so far is that we have not imposed
the Lorentz gauge condition Eq. (3) on the vector potential yet. Acting the
divergence on the momentum-mode expansion Eq. (9), we need

pµa
µ(p) =

1

c
ωpa

0(p)− ~p · ~aµ(p) = 0. (11)

Out of four independent annihilation operators aµ for µ = 0, 1, 2, 3, this con-
straint removes on linear combination of them. To satisfy this constraint,
we introduce the polarization vectors. When pµ = p(1, 0, 0, 1), the positive
helicity (right-handed) circular polarization has the polarization vector εµ+ =
(0, 1, i, 0)/

√
2, while the negative helicity (left-handed) circular polarization

is represented by the polarization vector εµ− = (0, 1,−i, 0)/
√

2. Two other po-
larization vectors are εµS = (1, 0, 0, 1)/

√
2 (“scalar”) and εµL = (1, 0, 0,−1)/

√
2
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(“longitudinal”). But the longitudinal polarization vector does not satisfy
the constraint Eq. (11), and this degree of freedom is removed. The scalar
one is actually a gauge freedom, because under the gauge transformation
Aµ → Aµ + ∂µω, aµ changes by an amount proportional to pµ and hence to
εµS. Therefore we can also omit εµS because it is unphysical.

In general, for the momentum vector pµ = p(1, sin θ cosφ, sin θ sinφ, cos θ),
the circular polarization vectors are given by

εµ±(p) =
1√
2

(±εµ1 + iεµ2) , (12)

where the linear polarization vectors are given by

εµ1(p) = (0, cos θ cosφ, cos θ sinφ,− sin θ), (13)

εµ2(p) = (0,− sinφ, cosφ, 0). (14)

We can check that these two vectors are orthogonal:

εµ∗λ (p)εµλ′(p) = δλ,λ′ . (15)

This property is satisfied for both the basis with linear polarizations i, j = 1, 2
and the helicity basis i, j = ±.

Given the polarization vectors, we re-expand the vector potential in terms
of the creation/annihilation operators

Aµ(~x) =

√
2πh̄c2

L3

∑
~p

1
√
ωp

∑
±

(εµ±(p)a±(p)e−ipµxµ/h̄ + εµ±(p)∗a†±(p)eipµxµ/h̄).(16)

With this expansion, the Lorentz gauge condition is automatically satisfied,
while the creation/annihilation operators obey the commutation relations

[aλ(p), a
†
λ′(q)] = δλ,λ′δ~p,~q (17)

for λ, λ′ = ±. We could also have used the linearly polarized photons

Aµ(~x) =

√
2πh̄c2

L3

∑
~p

1
√
ωp

2∑
λ=1

(εµλ(p)aλ(p)e
−ipµxµ/h̄ + εµλ(p)a†λ(p)e

ipµxµ/h̄).(18)

with
[aλ(p), a

†
λ′(q)] = δλ,λ′δ~p,~q (19)
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for λ, λ′ = 1, 2. Clearly, two sets of operators are related by

a1 =
1√
2
(a+ + a−), a2 =

i√
2
(a+ − a−). (20)

Once we have the mode expansion for the vector potential, one can work
out the Hamiltonian

H =
∫
d~x

1

2

(
~E2 + ~B2

)
=

∑
~p

∑
±
h̄ωp(a

†
±(p)a±(p) +

1

2
). (21)

Because h̄ωp = c|~p|, the dispersion relation for the photon is the familiar one
E = c|~p| for a massless relativistic particle.

The “vacuum” which does not have any photons is simply defined in the
similar way as in the harmonic oscillator,

aµ(p)|0〉 = 0. (22)

A single photon state is given by acting a creation operator on the vacuum,

|~p, λ〉 = a†λ(p)|0〉. (23)

Multi-photon states are obtained by acting the creation operator multiple
times. This way, the system of photons is nothing but (an infinite collection
of) harmonic oscillators.

3 Feynman Diagrams

We now have electrons and positrons described by Dirac equation, and also
photons from quantized Maxwell theory. What we need next is their inter-
action. The inteaction is described in terms of Feynman Diagrams, which
represent systematic perturbative expansion in powers of fine-structure con-
stant α = e2/h̄c = 1/137.

The basic ingredient is the emission and absorption of a photon by an
electron (or a positron). This is all there is to describe all electromagnetic
interactions in the QED.

Let us first look at a classic example of Rutherford scattering. You have a
point positive charge situated at the origin, and you send in another charged
particle (say, an electron). The point charge creates a Coulomb field around
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it. The electron trajectory gets bent because of the attractive Coulomb force.
Having said that the emission and absorption of a photon is all there is to
describe electromagnetic interactions, we have to explain this familiar process
using the language of quantized photons.

This is how it goes. The positive point charge emits a “virtual” photon,
which is the quantum description of the classical Coulomb field. Then the
incoming electron absorbes the virtual photon. Because the virtual photon
carries a finite momentum away from the positive charge and the electron ac-
quires it, the electron receives a kick, the quantum description of the bending
of the electron.

What is a virtual photon? If you look at the kinematics of an electron
absorbing a photon, it is easy to see that the photon cannot be a real photon.
Take the electron initial (final) four-momentum to be pµ

i = (Ei/c, 0, 0, pi)
(pµ

f = (Ef/c, pf sin θ, 0, pf cos θ)) without a loss of generality. Of course they
satisfy the standard dispersion relation p2

i = p2
f = m2

ec
2. The photon brings

in a four-momentum qµ = pµ
f − pµ

i = ((Ef − Ei)/c, pf sin θ, 0, pf cos θ − pi).
The photon, on the other hand, has to satisfy the massless dispersion relation
q2 = 0. By substituting the expressions,

q2 = (pf − pi)
2 = p2

f + p2
i − 2pf · pi = 2m2

ec
2 − 2

(
Ef

c

Ei

c
− pipf cos θ

)
. (24)

To make the discussion simple, let us assume that the positive charge has an
infinite mass (no recoil), and the initial and the final energies of the electron
are the same. Then, Ei = Ef , and

q2 = 2m2
ec

2 − 2(E2/c2 − p2 cos θ) = −2p2(1− cos θ) (25)

This quantity must vanish for a photon, but it happens only if θ = 0, or
in other words if the electron has not been “kicked” at all. This process is
impossible. At least for a “real” photon.

A virtual photon violates energy conservation to the extent the quantum
mechanics allows. For the Rutherford scattering process, the initial and
final electrons have the same energies (for an infinitely heavy scatterer). The
virtual photon does not carry any energy but a finite momentum to “kick” the
electron. Of course a real photon with a finite momentum has a finite energy,
but this photon doesn’t, hence virtual. But quantum mechanics allows a brief
violation of energy conservation as long as the energy is recovered without
getting detected. The state with energy violation ∆E is allowed to exist
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only over the time interval ∆t given by the energy-time uncertainty relation
∆E∆t ∼ h̄. The more energy is violated, the shorter the state survives.

In the case of Coulomb scattering, a “kick” is due to the momentum of
the virtual photon ~q2 = −q2 = 2p2(1 − cos θ) = 4p2 sin2 θ/2. This photon
would normally have the energy c|~q|, but it’s energy vanishes because the
initial and final energies of the electron are the same. This is the violation
of energy conservation by ∆E = 2cp sin θ/2. This virtual photon is allowed
to exist only for ∆t ∼ h̄/∆E = h̄/(2cp sin θ/2), and hence can go only over
the distance c∆t ∼ h̄/(2p sin θ/2). This is commensurate with the classical
idea that small kick (small θ) corresponds to a large impact parameter.

If two electrons scatter, called Møller scattering, they exchange a virtual
photon. But two electrons are identical, and you can draw another diagram
where two final state electrons are interchanged. The quantum mechanical
amplitude is given by the first diagram minus the second diagram, where the
relative minus sign represents that of the Fermi statistics.

Positrons are represented by lines going backward in time. Don’t try
to attach any philosophical meaning to this statement. It just turns out
to be a convenient book keeping of electrons and positrons in the Feynman
diagrams. Let us take the arrow of time to be upwards in the diagram.
When an electron and a positron scatter, they can exchange a virtual photon
sideways, but also upwards. This new diagram represents the annihilation
of the electron and the positron into a virtual photon, which materializes
as a pair of an electron and a positron. In the center-of-momentum frame,
the virtual photon is pure energy with no momentum. Again the vanishing
momentum suggests vanishing energy for the photon, but it has finite energy
and hence “virtual.”

The latter diagram can be used to produce other types of matter other
than electron/positron. For instance, the virtual photon can become a pair
of a muon and an anti-muon. The muon is similar to the electron, with the
same electric charge, spin, and statistics, but 200 times heavier and decays
within 2µ sec.

An electron can also be “virtual.” When you consider Compton scat-
tering, it proceeds via two different Feynman diagram. In one diagram, the
electron absorbs the photon, and becomes a “virtual” electron. This virtual
electron emits a photon and becomes real again. In the other diagram, the
electron emits a photon first and becomes virtual. Then the virtual elec-
tron absorbs the photon and becomes real. These two diagrams are added
together with positive sign, and allow you to work out the rate of Comp-
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ton scattering, its angular distribution, etc. The resulting formula is called
Klein–Nishina formula, and is one of the earliest quantitative success of the
QED.
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Figure 1: Bhabha scattering. The tracks are and electron and a positron
because they shower in the electromagnetic calorimeter, represented in the
inner red circle. The electron and positron beams are perpendicular to the
event display and they collide at the center. The display is a projection on
the plane transverse to the beams.

4 Casimir Effect

So far, we had not cared much about the zero-point energy of the photons
in Eq. (21). It is often said that the zero-point energy just amounts to the
baseline energy and all other energies are measured relative to it. In other
words, pretending it doesn’t exist is enough. But the zero-point energy plays
a role if a change in the system affects the zero-point energy itself. (See
Milonni, P. W., and Shih, M. L., 1992, Contemp. Phys. 33, 313. for a
review.)

To be concrete, put two conducting plates parallel to each other. The
distance between the plates is d (at z = 0 and z = d), and the plates are
very large of area L2 where we take L → ∞. To simplify the discussions,
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Figure 2: Pair production of muons from electron-positron annihilation.
They are muons because they penetrate both layers of calorimeters and hit
the “muon chamber,” the outermost layers represented in purple.
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Figure 3: Pair production of tau leptons from electron-positron annihilation.
One tau decays into an electron and two neutrinos, where the electrons show-
ers in the first layer of calorimeter. The other tau decays into three pions
and a neutrino where the pions are absorbed in the calorimeter.
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we also place thin plates at x = 0, x = L and y = 0, y = L to form a
box. A conducting plate imposes boundary conditions on the radiation field
E‖ = 0 and B⊥ = 0. Given these boundary conditions, the vector potential
is expanded in modes as

~A(~x) ∼ ~ε sin(nx, ny, nz)
(
πnx

L
x+

πny

L
y +

πnz

d
z
)
, (26)

for nx, ny, and nz non-negative integers. For each wave vector ~k = (πnx/L, πny/L, πnz/d),

the polarization vector is transverse: ~k · ~ε = 0. If one of the n’s vanishes,
however, say ~k = (0, πny/L, πnz/d), the polarization vector ~ε = (1, 0, 0) is
not allowed because that would give Ax 6= 0 for any x (and generic y, z)
and violates the boundary condition E‖ = 0. Therefore, we have only one
polarization whenever one of n’s vanishes.

The sum of zero point energies in this set up is therefore given by

U(d) =
∑ ′1

2
h̄ω × 2 =

∑ ′

nx,ny ,nz

h̄c

[(
πnx

L

)2

+
(
πny

L

)2

+
(
πnz

d

)2
]1/2

. (27)

The summation
∑ ′ means that whenever one of n’s vanishes, we drop the

multiplicity 2 for possible transverse polarizations. Because we regard the
size of the plate to be large L → ∞, we can replace the sum over nx, ny in
terms of integrals over kx,y = πnx,y/L,

U(d) =
(
L

π

)2 ∑ ′

nz

∫ ∞

0
dkx

∫ ∞

0
dkyh̄c

[
k2

x + k2
y +

(
πnz

d

)2
]1/2

. (28)

Recall that we are interested in the difference in the zero-point energy
when d is varied. Therefore, it is useful to compare it to the case when the
plates don’t exist. We can compute the zero-point energy density in the
infinite volume as usual, and then calcualte the energy U0(d) multiplied by
the volume L2d:

U0(d) = Ld2
∫ d~k

(2π)3
h̄c

[
k2

x + k2
y + k2

z

]1/2

= Ld2
∫ ∞

0

dkx

π

∫ ∞

0

dky

π

∫ ∞

0

dkz

π
h̄c

[
k2

x + k2
y + k2

z

]1/2
. (29)

What is observable is the difference

U(d)− U0(d)
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=
L2

π2
h̄c

∫ ∞

0
dkxdky

∑ ′

nz

[
k2

x + k2
y +

(
πnz

d

)2
]1/2

− d

π

∫ ∞

0
dkz

[
k2

x + k2
y + k2

z

]1/2

 .

(30)

Switching to the circular coordinates,∫ ∞

0
dkxdky =

∫ ∞

0
k⊥dk⊥

∫ π/2

0
dφ =

π

4

∫ ∞

0
dk2

⊥,

we find

U(d)− U0(d)

=
L2

π2
h̄c
π

4

∫ ∞

0
dk2

⊥

∑ ′

nz

[
k2
⊥ +

(
πnz

d

)2
]1/2

− d

π

∫ ∞

0
dkz

[
k2
⊥ + k2

z

]1/2

 .

(31)

This expression appears problematic because it looks badly divergent. The
divergence appears when the wave vector is large, which corresponds to high
frequency photons. The point is that the conducting plates are transparent
to, say, gamma rays, or in general for photons whose wavelengths are shorter
than interatomic separation a. Therefore, there is naturally a damping factor
f(ω) = f(c(k2

⊥ + k2
z)

1/2) with f(0) = 1 which smoothly cuts off the integral
for ω >∼ c/a. In particular, f(∞) = 0. Then the expression is safe and allows
us to use standard mathematical tricks. Changing to dimensionless variables
u = (k⊥d/π)2 and nz = kzd/π,

U(d)− U0(d) =
π2L2h̄c

4d3

∫ ∞

0
du

{∑ ′

nz

√
u+ n2

z −
∫ ∞

0
dnz

√
u+ n2

z

}
f(ω).

(32)
Interchanging the sum and integral, we define the integral

F (n) =
∫ ∞

0
du
√
u+ n2f(ω) =

∫ ∞

n2
du
√
uf(ω) (33)

with ω = πc
√
u/d in the last expression. Using this definition, we can write

U(d)− U0(d) =
π2L2h̄c

4d3

{
1

2
F (0) +

∞∑
n=1

F (n)−
∫ ∞

0
dnF (n)

}
. (34)
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Here we can use the Euler–McLaurin formula

1

2
F (0) +

∞∑
n=1

F (n)−
∫ ∞

0
F (n) = − 1

2!
B2F

′(0)− 1

4!
B4F

′′′(0)− · · · . (35)

The coefficientss Bk are Bernouilli numbers defined by the Taylor expansion

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
, (36)

and B0 = 1, B1 = −1/2, B2 = 1/6, B4 = −1/30, and all odd ones B2n−1

vanish except B1.
Here is a physicist’s proof of the Euler–McLaurin formula. Using the Taylor expansion

that defines the Bernouilli numbers, we replace x to a derivative operator ∂x

∂x

e∂x − 1
=
∞∑

k=0

Bk
∂k

x

k!
. (37)

We act this operator on a function F (x) and integrate it over x from 0 to ∞,∫ ∞

0

dx
∂x

e∂x − 1
F (x) =

∫ ∞

0

dx
∞∑

k=0

Bk
∂k

x

k!
F (x). (38)

The l.h.s. of Eq. (38) is then∫ ∞

0

∞∑
k=0

Bk
∂k

x

k!
F (x) =

∫ ∞

0

F (x)dx +
∞∑

k=1

Bk

[
∂k−1

x

k!
F (x)

]∞
0

=
∫ ∞

0

F (x)dx−
∞∑

k=0

Bk
1
k!

F (k−1)(0)

=
∫ ∞

0

F (x)dx +
1
2
F (0)−

∞∑
k=1

B2k
1

(2k)!
F (2k−1)(0). (39)

On the other hand, the r.h.s. of Eq. (38) is∫ ∞

0

dx
∂x

e∂x − 1
F (x). (40)

By Taylor expanding the denominator,

∂x

e∂x − 1
F (x) = −

∞∑
n=0

∂xen∂xF (x). (41)

Note that ea∂xF (x) =
∑∞

m=0
1

m!a
mF (m)(0) = F (x + a) and hence the r.h.s. is∫ ∞

0

dx
∂x

e∂x − 1
F (x) = −

∫ ∞

0

dx∂x

∞∑
n=0

F (x + n) =
∞∑

n=0

F (n). (42)
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By comparing both sides of Eq. (38), we now find

∞∑
n=0

F (n) =
∫ ∞

0

F (x)dx +
1
2
F (0)−

∞∑
k=1

B2k
1

(2k)!
F (2k−1)(0). (43)

Moving first two terms in the r.h.s. to the l.h.s, we obtain the Euler–McLaurin formula

1
2
F (0) +

∞∑
n=1

F (n)−
∫ ∞

0

F (x)dx = −
∞∑

k=1

B2k
1

(2k)!
F (2k−1)(0). (44)

Wondering why all odd Bk vanish except for B1? It is easy to check that

x

ex − 1
+

1
2
x =

x(2 + ex − 1)
2(ex − 1)

=
x

2
coth

x

2
(45)

which is manifestly an even function of x.
Going back to the definition of our function F (n) Eq. (33), we find

F ′(n) = −2n2f(πcn/d). (46)

As we will see below, we have d of order micron in our mind. This distance
is far larger than the interatomic spacing, and hence f(πcn/d) is constant
f = 1 in the region of our interest. Therefore, we can ignore derivatives
f (n)(0), and hence the only important term in the Euler–McLaurin formula
Eq. (35) is F ′′′(0) = −4. We obtain

U(d)− U0(d) = −π
2L2h̄c

4d3
F ′′′(0)

1

4!
B4 = −π

2L2h̄c

720d3
. (47)

In other words, there is an attractive force between two conducting plates

F = [U(d)− U0(d)]
′ =

π2L2h̄c

240d4
(48)

which is numerically
0.013dyn/cm2

(d/µm)3
(49)

per unit area. This is indeed a tiny force, but Sparnay has observed it
for the first time in 1958. He placed chromium steel and aluminum plates
at distances between 0.3–2µm, attached to a spring. The plates are also
connected to a capacitor. By measuring the capacitance, he could determine
the distance, while the known sping constant can convert it to the force.
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5 Lamb Shift

We learned with Dirac equation that states of hydrogen atom with the same
principal quantum number n and the total angular momentum j remain de-
generate despite the corretions from spin-orbit coupling, relativistic correc-
tions, and Darwin term. They are, however, split as a result of full quantum
interactions between the electron and photons. This is what Willis Lamb
found after he worked on war-time radar technology during the WWII and
came back to his lab, applied his radar technology to the hydrogen atom. He
found transition spectrum between 2s1/2 and 2p1/2 states of about 1 GHz.

You heard about the Darwin term pushing the s-states up because the
Zitterbewegung smears the electric field and gives rise to a delta-function
potential at the origin. If there is an additional reason for the jitter of the
electron, it would contribute more to the similar effect. The additional reason
is the zero-point fluctuation of the radiation field. Each momentum mode
of the photon has the zero-point fluctuation, and each of them jiggles the
electron. That would make the electron jitter a little bit more in addition to
the Zitterbewegung and pushes the s-state further up.

Let us for simplicity treat the electron non-relativistically and see how
much it gets jiggled by the zero-point motion of the electric field. The clas-
sical equation of motion for the “jiggle” part of the electron position is

δ~̈x =
e

m
~E. (50)

As we discussed in the case of the Darwin term generated by the Zitterbewe-
gung, such a “jiggle” would smear the electric field and generate additional
potential term

∆V =
1

2
〈δxiδxj〉 ∂

2eφ

∂xi∂xj
=

1

6
〈(δ~x)2〉∆(eφ). (51)

We are interested in the electric field caused by the zero-point motion. For
each frequency mode of the photon, with frequency ω, we find then

δ~xω = − e

mω2
~Eω. (52)

Therefore the size of the fluctuation in the electron position is

〈(δ~xω)2〉 =
e2

m2ω4
〈 ~E2

ω〉. (53)
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For each frequency mode, the zero-point energy of the photon is∫
d~x

1

8π
( ~E2

ω + ~B2
ω) =

1

2
h̄ω. (54)

Because ~E2 = ~B2 for a photon, we find

〈 ~E2
ω〉 =

2π

L3
h̄ω. (55)

We now sum the contribution of each momentum modes incoherently (be-
cause each of them gives a random jiggling in an uncorrelated way) for both
polarization states, and find

〈(δ~x)2〉 = 2L3
∫ d~k

(2π)3
〈(δ~xω)2〉

= 2L3
∫ 4πk2dk

(2π)3

e2

m2ω4

2π

L3
h̄ω

=
2

π

e2

m2

∫ 4πk2dk

(2π)3

1

ω4
h̄ω

=
2h̄e2

πm2c3

∫ dω

ω
. (56)

The integral over ω is logarithmically divergent both in the ultraviolet (ω →
∞) and the infrared (ω → 0).

Our calculation so far is clearly not valid when the electron is jiggled by a
photon of ω larger thanmc2/h̄ because the electron would become relativistic.
Therefore, we assume that the correct fully relativistic treament will cut
off the integral around ω ∼ mc2/h̄. Indeed, calculations using Feynman
diagrams show that this is indeed the case. Because the integral depends
only logarithmically on the cutoff, it should not make a big difference if the
cutoff is actually 2mc2/h̄ or mc2/2h̄, etc. We take it to be simply mc2/h̄.
In the infrared, frequency smaller than the time for the electron to move
inside the atom should not affect the result because the “jiggle” would be
overshadowed by the motion of the electron itself. Therefore the integral
is cutoff at around ω ∼ cZa−1

B = mcZe2/h̄2. As a result, the size of the
“jiggling” is approximately

〈(δ~x)2〉 ' 2h̄e2

πm2c3
log

mc2/h̄

mcZe2/h̄2 =
2h̄2α

πm2c2
log

1

Zα
, (57)
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with α = e2/h̄c = 1/137. Following the calculation of the energy shift of s-
states from the Darwin term, we find the additional potential term Eq. (51)
to be

∆V =
1

6
〈(δ~x)2〉∆(eφ)

' 1

6

2h̄2α

πm2c2
log

1

Zα
4πZe2δ(~x)

=
4h̄3Zα2

3m2c
log

1

Zα
δ(~x). (58)

The resulting energy shift for nS-states is

∆En ' 4h̄3Zα2

3m2c
log

1

Zα
|ψn(0)|2

=

[
8(Zα)4α

3π
log

1

Zα

]
mc2

1

2n3
. (59)

Therefore, this contribution is suppressed relative to the fine-structure by
α/π but is enhanced by a logarithm logα−1 = 4.9. For n = 2, it gives about
1 GHz for the microwave resonance frequency between 2p and 2s, in rough
agreement with data as we will see below.

The standard calculation uses Feynman diagrams, where the electron
emits a virtual photon before it interacts with the Coulomb potential, and
after the interaction it reabsorbes the virtual photon. This diagram, called
the vertex correction, is actually divergent both in the ultraviolet and the
infrared; reminiscent of the discussion above. It turns out, however, that the
ultraviolet divergence is of a different character. The piece that corresponds
to the amount of “jiggling” of the electron, more correctly called the “charge
radius” of the electron, is actually ultraviolet finite in the fully relativistic
calculations, supporting the rough “cutoff” at ω ∼ mc2/h̄ employed above.
The ultraviolet divergence in this Feynman diagram is properly cancelled by
another ultraviolet divergence called “wave function renormalization.” When
you use the second-order perturbation theory, your state |φn〉 is modified to

|φn〉 → |χn〉 = |φn〉+
∑
i6=n

|i〉〈i|V |0〉
E0 − Ei

+
∑

i,j 6=n

|j〉〈j|V |i〉〈i|V |0〉
(En − Ej)(En − Ei)

, (60)

where |0〉 is the zeroth order state (not the vacuum) and |i〉 other states that
mix with |0〉 due to the perturbation V . However, this state is not correctly
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normalized, because

〈χn|χn〉 = 1 +
∑

i

|〈φn|V |i〉|2

(En − Ei)2
. (61)

To correctly normalize the perturbed state |χn〉, we need to “renormalize” it
as

|χn〉′ = |χn〉
1

1 + 1
2

∑
i |〈φn|V |i〉|2/(En − Ei)2

(62)

In the case of the QED, it corresponds to the Feynman diagram where the
electron emits a virtual photon and reabsorbes it without any other interac-
tions, which is also ultraviolet divergent. This change in the normalization
of the state can be shown to precisely cancel the ultraviolet divergence in
the vertex correction, and hence there is no problem with the apparent di-
vergences.

The present theoretical and experimental situation is reviewed, for exam-
ple, in M.I. Eides, H. Grotch and V.A. Shelyuto, “Theory of light hydrogen-
like atoms,” Phys. Rep., 342, 63-261, (2001). The best experimental value
of the 2s–2p splitting is

1.057 845(3) GHz. (63)

The theoretical calculations depend on variety of other corrections in addition
to the effect I had discussed, including the fact that the charge of the proton is
not strictly point-like. The charge radius of the proton is not well determined
experimentally, and limits the theoretical accuracy in calculating the level
splitting. Using one particular measurement of the proton charge radius
0.862(12) fm, the theory gives

1.057 833(2)(4) GHz, (64)

which disagrees with data at more than 2 sigma level. But other measure-
ments of the proton charge radius disagree with this measurement, and the
discrepancy becomes larger. The inconsistency among the data makes it im-
possible for us to draw any conclusions beyond a simple qualitative statement
that theory and data agree for 6 digits.

6 Anomalous Magnetic Moment

We learned from the Dirac equation that the gyromagnetic ratio g = 2.
This is certainly in a good agreement with data. But both experiments and
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Figure 4: Low-lying hydrogen atomic levels with Lamb shifts and hyperfine
splittings. Taken from M.I. Eides, H. Grotch and V.A. Shelyuto, “Theory of
light hydrogenlike atoms,” Phys. Rep., 342, 63-261, (2001).
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theoretical calculations had progressed greatly since old days. (See V.W.
Hughes and T. Kinoshita, Rev. Mod. Phys. 71, S133-S139 (1999). )

The crucial theoretical progress usually attributed to Schwinger is that
there is a correction at O(α) to the g-factor. Because of the quantum fluc-
tuations, an electron is sometimes not just an electron but is accompanied
by a photon. More precisely, the process is the following. An electron inter-
acts with the magnetic field with g = 2. But before the electron interacts
with the magnetic field, it can emit a (virtual) photon, violating the energy
conservation. The electron then interacts with the magnetic field, and only
after that, it reabsorbes the photon. Schwinger’s calculation showed that the
g-factor is not longer precisely 2 but is corrected as

g = 2
(
1 +

α

2π

)
. (65)

More recently, Kinoshita has calculated the correction up to O(α4) with 891
Feynman diagrams. It is customary to quote ae = (ge − 2)/2. He found

ae =
α

2π
− 0.328 478 965 . . .

(
α

π

)2

+ 1.181 241 456 . . .
(
α

π

)3

−1.509 8(384)
(
α

π

)4

+ 4.393(27)× 10−12. (66)

The last constant is a contribution from known heavier particles, such as
µ, τ leptons, hadrons, and W , Z bosons. In order to obtain a numerical
value, we need to know the fine structure constant α very precisely. The best
measurement comes from the Quantum Hall Effect,

α−1 = 137.036 003 7(33). (67)

Using this value as the input, the QED predicts the electron magnetic mo-
ment to be

ae = 1 159 652 153.5(1.2)(28.0)× 10−12. (68)

The first uncertainty comes from the estimated error in the numerical in-
tegrations involved in the calculations, while the latter (and the dominant)
error is in the input value of α.

The experiment also had made a dramatic progress. The most precise
measurement was done using Penning trap. If g were exactly two, an electron
moving in a magnetic field would have precisely the same values for the
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cylotron frequency and the spin precession frequency. The difference between
them measures g − 2. The best values due to Van Dyck are

ae− = 1 159 652 188.4(4.3)× 10−12, (69)

ae+ = 1 159 652 187.9(4.3)× 10−12. (70)

The agreement between experiment and theory is truly amazing. The exper-
imental accuracy is 4 × 10−12, which agrees with theory at 1.3 sigma level.
Incredible! This is the most dramatic success of quantum physics, most likely
of all physical sciences.

The anomalous magnetic moment of muon is also interesting. Because
muon is short-lived (lifetime is microsecond), the experimental measurement
is more difficult. The trick is to actually use the decay product of the muon,
µ− → e−ν̄eνµ, where you can detect the electron (but not neutrinos). Luckily,
parity is violated in this decay (!),1 and the direction of the decay electron
is correlated with the muon spin. By measuring the direction of the de-
cay electrons, we can measure the muon spin precession and hence gµ − 2.
Theoretically, muon is heavier and the anomalous magnetic moment is more
sensitive to heavier particles than that of electron. In fact, the contribution
from hadrons (pions, various mesons, protons, etc) is quite important. You
may even hope that it may detect the effect of yet-undiscovered particles.

The theoretical prediction is (see, e.g., U. Chattopadhyay, A. Corsetti, P.
Nath, http://arXiv.org/abs/hep-ph/0204251)

aµ = 11 659 176.8(6.7)× 10−10. (71)

Currently a new experiment is being conducted at Brookhaven National
Laboratory and has measured the (anti-)muon magnetic moment. They re-
ported (see H. N. Brown et al. [Muon g − 2 Collaboration], Phys. Rev.
Lett. 86, 2227 (2001), http://arXiv.org/abs/hep-ex/0102017. See also
http://phyppro1.phy.bnl.gov/g2muon/index.shtml)

aµ = 11 659 202(14)(6)× 10−10. (72)

1According to Leon Lederman’s book “The God Particle,” he conceived the parity-
violation experiment in muon decay when he heard of the rumor that C.S. Wu found
“large” parity violation in nuclear β-decay. Together with his collaborators, he rushed to
the laboratory where a graduate student was mounting his thesis experiment. Quickly
they disassembled it (!), and mounted the parity violation experiment. They result is
reported in Physical Review Letters right after Wu’s paper. You should feel lucky if your
supervisor is not too keen on a timely success.
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They agree at 1.6σ level.2

7 Vacuum Polarization

The Dirac sea is a collection of infinite number of electrons in negative energy
states. Even though it has an infinite (negative) charge, as long as it is
completely homogeneous, we will not be able to detect it because there is no
preferred direction to produce an electric field. However, if the homogenity
is broken, for example by the presence of a point charge, the distribution
of the negative energy electrons is no longer homogeneous and can have a
physically observable effect.

Suppose you place a positive point charge in the “vacuum” filled with
negative energy electrons. The negative energy electrons are then attracted
to the positive point charge, effectively screening the point charge. Therefore,
viewed from far away, the charge of the point charge would appear less than
what you originally put in. As you go closer and closer to the point charge,
you see less effect due to the screening by negative energy electrons, and
hence the charge appears larger and larger. In other words, the fine-structure
constant α would appear larger and larger as you measure it at smaller and
small distance scales. And smaller distance scales, because of the uncertainty
principle, corresponds to the larger momentum transfer. This is the effect
of the “vacuum polarization,” causing the fine-structure constant to grow at
higher momentum transfers. We often say that the fine-structure constant
runs .

This effect, even though theoretically well worked out within the QED,
had been measured for the first time in 1997, by an experiment at the
electron-positron collider TRISTAN (I. Levine et al , “Measurement of the

2In 2001 when this result was reported, there was a big excitement in this field because
the data and theory did not agree at 2.6 sigma! The best theoretical result then was
aµ = 11 659 159.6(6.7) × 10−10, based on QED calculations by Kinoshita and updated
by A. Czarnecki and W. J. Marciano, Phys. Rev. D 64, 013014 (2001), http://arXiv.
org/abs/hep-ph/0102122. The experimental group speculated that this may be due to
the quantum effect of yet-undiscovered supersymmetric partner of muon, µ̃. However,
it turned out that there was a sign mistake in the theoretical calculation for one small
contribution. Kinoshita (Cornell) is the renowned world expert in this type of calculations.
The problem was that he apparently used a software which used a differeng sign convention
from his, but without reading the manual carefully. See Hayakawa and Kinoshita, http:
//arXiv.org/abs/hep-ph/0112102, for more details.
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Electromagnetic Coupling at Large Momentum Transfer,” Phys. Rev. Lett.
78, 424–427 (1997)). Compared to the value of the fine-structure con-
stant Eq. (67) at zero momentum transfer (a negligible momentum trans-
fer compared to mc) such as in Quantum Hall Effect, they reported the
fine-structure constant at momentum transfer Q2 = (57.77 GeV/c)2 to be
α−1(Q2) = 128.5 ± 1.8 ± 0.7, which agrees with the theoretical prediction
129.6 ± 0.1. Note that the vacuum polarization effect is not just due to
the negative energy electrons, but also due to mu and tau leptons, and all
hadrons (i.e., quarks).
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Figure 5: The measured and theoretical fine-structure constant as a function
of momentum transfer Q. The solid and dotted lines correspond to positive
and negative Q2 predictions, respectively. As we probe closer to the bare
charge, its effective strength increases. 〈Qγ1Qγ2〉1/2 denotes the square root
of the median value for the product of the photon momentum transfers in the
anti-tagged e+e− → e+e−µ+µ− sample. The hadronic data point has been
shifted for display. Taken from I. Levine et al .
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