
221A Lecture Notes
Convergence of Perturbation Theory

1 Asymptotic Series

An asymptotic series in a parameter ε of a function is given in a power series

f(ε) =
∞∑

n=0

fnε
n (1)

where the series actually does not converge. Instead, if you truncate the
series at an order N

fN(ε) =
N∑

n=0

fnε
n, (2)

the difference between the true value f(ε) and and approximate expression
fN(ε) goes to zero (f(ε) − fN(ε))/εN → 0 as ε → 0. In most examples, the
perturbation theory gives an asymptotic series rather than a Taylor series.
If it doesn’t converge, why do we trust it?

In the lecture notes on the steepest descent method, an asymptotic ex-
pansion of the Gamma function Γ(x) in inverse powers in x is discussed. The
series is (obtained by Series[Γ[x], {x,∞,10}]),

Γ(x) =
√

2πx xx−1e−x
(
1 +

1

12 x
+

1

288 x2
− 139

51840 x3
− 571

2488320 x4
(3)

+
163879

209018880 x5
+

5246819

75246796800 x6
− 534703531

902961561600 x7
− 4483131259

86684309913600 x8

+
432261921612371

514904800886784000 x9
+

6232523202521089

86504006548979712000 x10
+ O(x−11)

)
. (4)

It is an asymptotic series because its derivation ignores the exponentially
suppressed tail when the integration region is changed from x ∈ [0, inf) to
(− inf, inf). Therefore, it misses corrections that behave as e−x or e−x2

. In
fact, if you attempt to expand e−x in power series of 1/x, or equivalently,
g(ε) = e−1/ε in power series of ε, you find that coefficient at each order
vanishes.

g(0) = lim
ε→0

e−1/ε = 0, (5)
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n sum
0 0.922137
1 0.922137
2 0.998982
3 1.002180
4 0.999711
5 0.999499
6 1.000220
7 1.000290
8 0.999741
9 0.999693

n sum
10 1.00047
11 1.00053
12 0.998768
13 0.998618
14 1.00452
15 1.00502
16 0.977792
17 0.975504
18 1.14106
19 1.15495

n sum
20 −0.128483
21 −0.235955
22 12.1188
23 13.1524
24 −131.44
25 −143.527
26 1878.31
27 2047.24
28 −31242.9
29 −34023.3
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Table 1: The sum of the asymptotic series of Γ(1) up to the n-th order.

g′(0) = lim
ε→0

1

ε2
e−1/ε = 0, (6)

g′′(0) = lim
ε→0

(
1

ε4
− 2

ε3

)
e−1/ε = 0, (7)

and so on. At each finite order in Taylor expansion, the prefactor is always
power-divergent while the exponential factor wins. Therefore the expansion
of this function around ε = 0 never “sees” the function at all. In other words,
there is no information about this function at the origin. The exponentially
suppressed correction is nominally “smaller” than the power-suppressed cor-
rection in power series expansion and ignored, while it comes back and haunts
you when you evaluate it for the finite value of the expansion parameter.

On the other hand, this asymptotic series works quite well from the prac-
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tical point of view. Even for x = 1, where an expansion in 1/x is not expected
to be good at all, the series appears to converge to the true result Γ(1) = 1.
The series approaches the true value up to the sixth order within the error
of 0.00022, quite remarkable. But beyond the sixth order, the series starts
to deviate from the true result, and eventually goes completely wild.

2 Convergence of the Perturbation Series

2.1 Infinite Radius of Convergence

Some perturbation series is convergent with an infinite radius of convergence.
The simplest example is probably the harmonic oscillator with a linear term
as the perturbation,

H =
1

2
p2 +

1

2
x2 − x0x. (8)

For simplicity, we take m = ω = h̄ = 1. One can solve the system exactly,
because

H =
1

2
p2 +

1

2
(x− x0)

2 − 1

2
x2

0. (9)

The ground state is only a shifted Gaussian, with the energy E0 = 1
2
− 1

2
x2

0.
The perturbative expansion gives the second-order shift

∆(2) =
〈0(0)| − x0x|1(0)〉〈1(0)| − x0x|0(0)〉

E
(0)
0 − E

(0)
1

=
x2

0/2

−1
= −1

2
x2

0, (10)

reproducing the exact result. We used x = (a+ a†)/
√

2 to obtain this result.
It is not obvious, but all the higher order corrections vanish.

The ground-state wave function can be obtained by rewriting the Hamil-
tonian as

H = a†a +
1

2
− a + a†√

2
x0 =

(
a† − x0√

2

)(
a− x0√

2

)
− x2

0

2
. (11)

The ground-state must satisfy(
a− x0√

2

)
|0〉 = 0, (12)

and therefore it is a coherent state,

|0〉 = ea†x0/
√

2|0(0)〉e−x2
0/4. (13)
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In the perturbation theory, the correction to the ground-state wave function
is given by Eq. (5.1.44) in Sakurai,

|0〉 = |0(0)〉+ |1(0)〉〈1
(0)| − x0x|0(0)〉
E

(0)
0 − E

(0)
1

+|2(0)〉〈2
(0)| − x0x|1(0)〉〈1(0)| − x0x|0(0)〉
(E

(0)
0 − E

(0)
2 )(E

(0)
0 − E

(0)
1 )

+ O(x0)
3

= |0(0)〉+
−x0/

√
2

−1
|1(0)〉+

x2
0/
√

2

2
|2(0)〉+ O(x0)

3. (14)

This expression agrees with the Taylor series expansion of ea†x0/
√

2|0(0)〉. How-
ever, this state is not properly normalized. It needs the wavefunction renor-
malization factor Eq. (5.1.48b) in Sakurai,

Z0 = 1− |〈1(0)| − x0x|0(0)〉|2

(−1)2
= 1− x2

0

2
(15)

The normalization factor e−x2
0/4 agrees with Z

−1/2
0 up to this order.

Even if x0 is large, the perturbation series converges.

2.2 Finite Radius of Convergence

Another simple example is again the harmonic oscillator with a quadratic
term as the perturbation,

H =
1

2
p2 +

1

2
x2 +

ε

2
x2. (16)

This is the example in Sakurai, pp. 294–296. The exact ground-state energy
is

E0 =
1

2

√
1 + ε =

1

2

(
1 +

1

2
ε− 1

8
ε2 + O(ε3)

)
, (17)

which agrees with the perturbative result. However, we know that the radius
convergence of the Taylor series expansion of

√
1 + ε is |ε| < 1. In particular,

there is a branch cut for ε < −1 and it is clear that the series does not
converge there.

There is a physical intuitive picture why the perturbation series does not
converge for |ε| > 1. For ε < −1, the potential is actually upside down and
there is no stable ground state. Therefore, the perturbation series should not
converge!
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2.3 Zero Radius of Convergence

The most famous example is the anharmonic oscillator,

H =
1

2
p2 +

1

2
x2 + λx4. (18)

The ground-state energy is expanded in the power series,

E0 =
1

2

(
1 +

∞∑
n=1

λnAn

)
. (19)

The coefficients An can be calculated using the recursion formula given by
Carl M. Bender and Tai Tsun Wu, “ Anharmonic Oscillator. II. A Study of
Perturbation Theory in Large Order,” Phys. Rev. D 7, 1620–1636 (1973),
Section VI. They are given in Table 2.

In order to test the perturbative result, I also computed the ground-state
energy numerically. I give examples for λ = 0.01 in Table 3 and 0.05 in
Table 4. For the former, the series converges to the true result and appears
stable up to the 40th order. For the latter, the series comes close to the true
result at the sixth and seventh order, and then it starts to diverge.

We actually expect the perturbation series to have the zero radius of
convergence. This is because a negative λ, no matter how small in the mag-
nitude, leads to a potential unbounded from below and does not give a stable
ground state. See Fig. 1. The “ground state” would tunnel through the po-
tential barrier. The tunneling amplitude can be estimated using the WKB
method if the barrier is sufficiently high, or equivalently, if |λ| is sufficiently
small. Neglecting the energy relative to the height of the potential barrier,
the WKB amplitude of the tunneling is

exp

− ∫ 1/
√

2|λ|

0

√
2
(

1

2
x2 − |λ|x4

)
dx

 . (20)

Changing the variable x = ξ/
√
|λ|, it becomes

exp

− 1

|λ|

∫ 1/
√

2

0

√
2
(

1

2
ξ2 − ξ4

)
dξ

 = e−1/6|λ|. (21)

Clearly, this effect cannot be obtained in the perturbation theory.
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n An

1 0.75000000
2 −2.62500000
3 2.08125000×101

4 −2.41289062×102

5 3.58098047×103

6 −6.39828135×104

7 1.32973373×106

8 −3.14482147×107

9 8.33541603×108

10 −2.44789407×1010

11 7.89333316×1011

12 −2.77387770×1013

13 1.05564666×1015

14 −4.32681068×1016

15 1.90081720×1018

16 −8.91210175×1019

17 4.44255089×1021

18 −2.34646431×1023

19 1.30915026×1025

20 −7.69399985×1026

n An

21 4.75124077×1028

22 −3.07579295×1030

23 2.08301009×1032

24 −1.47290492×1034

25 1.08552296×1036

26 −8.32483628×1037

27 6.63329371×1039

28 −5.48392431×1041

29 4.69782421×1043

30 −4.16502700×1045

31 3.81734896×1047

32 −3.61299554×1049

33 3.52778002×1051

34 −3.55023394×1053

35 3.67917476×1055

36 −3.92301600×1057

37 4.30055097×1059

38 −4.84327278×1061

39 5.59961162×1063

40 −6.64186378×1065

Table 2: The coefficients An in the perturbative expansion of the ground-
state energy of the anharmonic oscillator.

Becker and Wu showed that the coefficients of the power series behaves
as

An =
(−1)n+1

√
6

π3/2
3nΓ(n +

1

2
)
(
1− 95

72

1

n
+ O(n−2)

)
, (22)

and hence grow faster than n!. No matter how small λ is, Anλ
n grows very

fast for large n and makes the series non-convergent.
In general, it is typical that the perturbation theory has zero radius of con-

vergence, and the perturbative series is only an asymptotic series. Nonethe-
less, as long as the expansion parameter is small, the series approaches the
true result quite well at a finite order.
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1 1.01500000
2 1.01447500
3 1.01451662
4 1.01451180
5 1.01451252
6 1.01451239
7 1.01451241
8 1.01451241
9 1.01451241
10 1.01451241

11 1.01451241
12 1.01451241
13 1.01451241
14 1.01451241
15 1.01451241
16 1.01451241
17 1.01451241
18 1.01451241
19 1.01451241
20 1.01451241

21 1.01451241
22 1.01451241
23 1.01451241
24 1.01451241
25 1.01451241
26 1.01451241
27 1.01451241
28 1.01451241
29 1.01451241
30 1.01451241

31 1.01451241
32 1.01451241
33 1.01451241
34 1.01451241
35 1.01451241
36 1.01451241
37 1.01451241
38 1.01451241
39 1.01451241
40 1.01451241

Table 3: The good apparent convergence of the series for λ = 0.01. The true
result is 1.01451241 obtained by solving the Schrödinger equation numeri-
cally.

1 1.07500000
2 1.06187500
3 1.06707813
4 1.06406201
5 1.06630013
6 1.06430066
7 1.06637837
8 1.06392148
9 1.06717750
10 1.06239646
11 1.07010479
12 1.05656047
13 1.08233309
14 1.02951557
15 1.14553227
16 0.87355644
17 1.55143608
18 −0.23877459
19 4.75523874
20 −9.91990573

21 3.53914714×101

22 −1.11273814×102

23 3.85354663×102

24 −1.37048546×103

25 5.0997380×103

26 −1.97102171×104

27 7.91336015×104

28 −3.29450770×105

29 1.42062588×106

30 −6.33734492×106

31 2.92145041×107

32 −1.39028792×108

33 6.82346905×108

34 −3.45067145×109

35 1.79649554×1010

36 −9.62098984×1010

37 5.29602979×1011

38 −2.99434377×1012

39 1.73769365×1013

40 −1.03437934×1014

Table 4: The apparent convergence and then divergence of the series for
λ = 0.05. The true result is 1.06528551 obtained by solving the Schrödinger
equation numerically.
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Figure 1: The potential of the anharmonic oscillator V = 1
2
x2 + λx4 with

λ = 0.05.
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