221A Lecture Notes

Convergence of Perturbation Theory

1 Asymptotic Series

An asymptotic series in a parameter € of a function is given in a power series
o

fle)=2_ fue" (1)
n=0

where the series actually does not converge. Instead, if you truncate the
series at an order NV

fn(e) = Z% fue", (2)

the difference between the true value f(€) and and approximate expression
fn(€) goes to zero (f(e) — fn(€))/e¥ — 0 as e — 0. In most examples, the
perturbation theory gives an asymptotic series rather than a Taylor series.
If it doesn’t converge, why do we trust it?

In the lecture notes on the steepest descent method, an asymptotic ex-
pansion of the Gamma function I'(x) in inverse powers in z is discussed. The
series is (obtained by Series[I'[x], {x,00,10}]),
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It is an asymptotic series because its derivation ignores the exponentially
suppressed tail when the integration region is changed from z € [0,inf) to
(—inf,inf). Therefore, it misses corrections that behave as e=* or e™*". In
fact, if you attempt to expand e * in power series of 1/, or equivalently,

g(e) = e~ in power series of ¢, you find that coefficient at each order
vanishes.
9(0) = lime V=0, (5)



n sum n sum n sum
0 | 0.922137 || 10 | 1.00047 20 —0.128483
110.922137 || 11 | 1.00053 21 —0.235955
2 1 0.998982 || 12 | 0.998768 || 22 12.1188
3 | 1.002180 || 13 | 0.998618 || 23 13.1524
410999711 || 14 | 1.00452 24 —131.44
5 1 0.999499 || 15 | 1.00502 25 —143.527
6 | 1.000220 || 16 | 0.977792 || 26 1878.31
7 | 1.000290 || 17 | 0.975504 || 27 2047.24
8 10.999741 || 18 | 1.14106 28 | —31242.9
9 10.999693 || 19 | 1.15495 29 | —34023.3
sum
1,
0. 8;
0.6;
0. 4;
0. 2}
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Table 1: The sum of the asymptotic series of I'(1) up to the n-th order.
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and so on. At each finite order in Taylor expansion, the prefactor is always
power-divergent while the exponential factor wins. Therefore the expansion
of this function around € = 0 never “sees” the function at all. In other words,
there is no information about this function at the origin. The exponentially
suppressed correction is nominally “smaller” than the power-suppressed cor-
rection in power series expansion and ignored, while it comes back and haunts
you when you evaluate it for the finite value of the expansion parameter.
On the other hand, this asymptotic series works quite well from the prac-
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tical point of view. Even for z = 1, where an expansion in 1/z is not expected
to be good at all, the series appears to converge to the true result I'(1) = 1.
The series approaches the true value up to the sixth order within the error
of 0.00022, quite remarkable. But beyond the sixth order, the series starts
to deviate from the true result, and eventually goes completely wild.

2 Convergence of the Perturbation Series

2.1 Infinite Radius of Convergence

Some perturbation series is convergent with an infinite radius of convergence.
The simplest example is probably the harmonic oscillator with a linear term

as the perturbation,
H=lpyle (8)
= - —x" — xoT.
ol T 0
For simplicity, we take m = w = h = 1. One can solve the system exactly,

because 1 1 ]

The ground state is only a shifted Gaussian, with the energy Ey = % — %m%
The perturbative expansion gives the second-order shift
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reproducing the exact result. We used x = (a +a')/+/2 to obtain this result.
It is not obvious, but all the higher order corrections vanish.

The ground-state wave function can be obtained by rewriting the Hamil-
tonian as

1 a+al T x0 x2
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The ground-state must satisfy

(a— j‘%) 10) =0, (12)

and therefore it is a coherent state,

10) = e*'e0/V2)O) =25/, (13)
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In the perturbation theory, the correction to the ground-state wave function
is given by Eq. (5.1.44) in Sakurai,
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This expression agrees with the Taylor series expansion of e2'0/v2|0(©)) . How-
ever, this state is not properly normalized. It needs the wavefunction renor-

malization factor Eq. (5.1.48b) in Sakurai,
(1] = soz0™P a3
1) 2

The normalization factor e~%/4 agrees with Zy 1/2 up to this order.
Even if xg is large, the perturbation series converges.

Zyp=1-—

(15)

2.2 Finite Radius of Convergence

Another simple example is again the harmonic oscillator with a quadratic
term as the perturbation,

1 1 €
H=—p* + —2* + —a°. 16

5P TRty (16)
This is the example in Sakurai, pp. 294-296. The exact ground-state energy
is

1 1 1 1, 3
EOZQ\/1+€:2(1+2E—8E +O(E)), (].7)

which agrees with the perturbative result. However, we know that the radius
convergence of the Taylor series expansion of v/1 + € is |e| < 1. In particular,
there is a branch cut for ¢ < —1 and it is clear that the series does not
converge there.

There is a physical intuitive picture why the perturbation series does not
converge for |¢|] > 1. For e < —1, the potential is actually upside down and
there is no stable ground state. Therefore, the perturbation series should not
converge!



2.3 Zero Radius of Convergence
The most famous example is the anharmonic oscillator,

1 1
H= §p2 + 53:2 + Azt (18)

The ground-state energy is expanded in the power series,

o

Ey = ; <1 +> A”An> : (19)

n=1

The coefficients A,, can be calculated using the recursion formula given by
Carl M. Bender and Tai Tsun Wu, “ Anharmonic Oscillator. II. A Study of
Perturbation Theory in Large Order,” Phys. Rev. D 7, 1620-1636 (1973),
Section VI. They are given in Table [2|

In order to test the perturbative result, I also computed the ground-state
energy numerically. I give examples for A = 0.01 in Table |3| and 0.05 in
Table |4, For the former, the series converges to the true result and appears
stable up to the 40th order. For the latter, the series comes close to the true
result at the sixth and seventh order, and then it starts to diverge.

We actually expect the perturbation series to have the zero radius of
convergence. This is because a negative A, no matter how small in the mag-
nitude, leads to a potential unbounded from below and does not give a stable
ground state. See Fig.[l] The “ground state” would tunnel through the po-
tential barrier. The tunneling amplitude can be estimated using the WKB
method if the barrier is sufficiently high, or equivalently, if |A| is sufficiently
small. Neglecting the energy relative to the height of the potential barrier,
the WKB amplitude of the tunneling is

exp [— /01/\/27' \/2 (;xz _ ])\|x4> dx] . (20)

Changing the variable x = £/4/|A|, it becomes

1/V2 1
exp {—‘i’ i (2 (252 — §4> dg] — e V6P, (21)

Clearly, this effect cannot be obtained in the perturbation theory.




A, n A,
0.75000000 21 4.75124077x 1078
—2.62500000 22 | —3.07579295x 1030

2.08125000x 10" || 23 | 2.08301009 x 1032
—2.41289062x10% || 24 | —1.47290492x 103+
3.58098047x10% || 25 | 1.08552296x 103
—6.39828135x10* || 26 | —8.32483628x 1037
1.32973373x10% || 27 | 6.63329371x10%
—3.14482147x107 || 28 | —5.48392431x10%
8.33541603x10% || 29 | 4.69782421x10*
10 | —2.44789407x 10 || 30 | —4.16502700x 10
11| 7.89333316x10' || 31 | 3.81734896x10%"
12 | —2.77387770x 10" || 32 | —3.61299554x 10
13| 1.05564666x10™ || 33 | 3.52778002x 10°!
14 | —4.32681068x 106 || 34 | —3.55023394x10°3
15| 1.90081720x10'® || 35 | 3.67917476x10°°
16 | —8.91210175x10" || 36 | —3.92301600x 10°7
17 | 4.44255089x 102" || 37 | 4.30055097x 1057
18 | —2.34646431x10% || 38 | —4.84327278x 106!
19 | 1.30915026x10% || 39 | 5.59961162x10%3
20 | —7.69399985x10% || 40 | —6.64186378x 10%°
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Table 2: The coefficients A,, in the perturbative expansion of the ground-
state energy of the anharmonic oscillator.

Becker and Wu showed that the coefficients of the power series behaves
as

13/2

4, = CUVOp ;) (1 - 3;71 + O(n—2)> ,

and hence grow faster than n!. No matter how small X is, A,\" grows very
fast for large n and makes the series non-convergent.

In general, it is typical that the perturbation theory has zero radius of con-
vergence, and the perturbative series is only an asymptotic series. Nonethe-
less, as long as the expansion parameter is small, the series approaches the
true result quite well at a finite order.

(22)



1 1.01500000 || 11 1.01451241 || 21 1.01451241 || 31 1.01451241
2 1.01447500 || 12 1.01451241 || 22 1.01451241 || 32 1.01451241
3 1.01451662 || 13 1.01451241 || 23 1.01451241 || 33 1.01451241
4 1.01451180 || 14 1.01451241 || 24 1.01451241 || 34 1.01451241
5 1.01451252 || 15 1.01451241 || 25 1.01451241 || 35 1.01451241
6 1.01451239 || 16 1.01451241 || 26 1.01451241 || 36 1.01451241
7 1.01451241 || 17 1.01451241 || 27 1.01451241 || 37 1.01451241
8 1.01451241 || 18 1.01451241 || 28 1.01451241 || 38 1.01451241
9 1.01451241 || 19 1.01451241 || 29 1.01451241 || 39 1.01451241
10 1.01451241 || 20 1.01451241 || 30 1.01451241 || 40 1.01451241

Table 3: The good apparent convergence of the series for A = 0.01. The true
result is 1.01451241 obtained by solving the Schrodinger equation numeri-
cally.

1 1.07500000 || 21 3.53914714x 10"
2 1.06187500 || 22 —1.11273814x10?
3 1.06707813 || 23 3.85354663x 10?
4 1.06406201 || 24 —1.37048546x10°
o 1.06630013 || 25 5.0997380x 103

6 1.06430066 || 26 —1.97102171x10%
7 1.06637837 || 27 7.91336015x10%
8 1.06392148 || 28 —3.29450770x10°
9 1.06717750 || 29 1.42062588 %105

10  1.06239646 || 30 —6.33734492x 108
11 1.07010479 || 31  2.92145041x107
12 1.05656047 || 32 —1.39028792x10®
13 1.08233309 || 33  6.82346905x10°
14 1.02951557 || 34 —3.45067145%10°
15 1.14553227 || 35  1.79649554x10'°
16  0.87355644 || 36 —9.62098984x 100
17 1.55143608 || 37  5.29602979x 10!
18 —0.23877459 || 38 —2.99434377x10"2
19  4.75523874 || 39  1.73769365x 10"
20 —9.91990573 || 40 —1.03437934x10'

Table 4: The apparent convergence and then divergence of the series for
A = 0.05. The true result is 1.06528551 obtained by solving the Schrodinger
equation numerically.
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Figure 1: The potential of the anharmonic oscillator V' = 12% + Az* with
A= 0.05.
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