221A Miscellaneous Notes
Continuity Equation

1 The Continuity Equation

As I received questions about the midterm problems, I realized that some
of you have a conceptual gap about the continuity equation. It appears in
Sakurai, pp. 101-102, but he does not go into the general discussions about
what is meant by the one of the most famous equations in physics (Sakurai
(2.4.15)),

called the continuity equation. Let me review what it means.

Imagine you contain the system completely in a volume, so that nothing
is going in and out at the surface. Integrate the both sides of the equation
over this entire volume.
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Using the Gauss’ theorem, the second term can be rewritten as a surface
integral,
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where the surface element dS is defined outwards and integrated over the
surface AV of the volume V. In our case, because we contained the system
completely in the volume, there is nothing at the surface and this term van-
ishes. For the first term, interchanging the order of the volume integral and
the time derivative, it becomes
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Therefore, the equation is
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and hence
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is conserved.
In fact, even if the volume does not contain the full system, the amount
of the change in [ dVp is given by the amount of flow out from the volume,
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which gives the interpretation that the 7, t) is the current of the conserved
quantity, while p(Z,t) is the density of the conserved quantity.

2 Examples

This equation shows up in many many different contexts in physics.

2.1 Fluid Mechanics

Probably the first one is in fluid mechanics. A fluid is described by the
mass density p(Z,t) and its mass flow (or momentum density if you like)
NZt) = p(Z,t)v(Z,t), where U(Z,t) is the velocity field. The conserved
quantity is the total mass of the fluid,
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2.2 Heat Conduction

In the problem of heat conduction, we solve the equation
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This equation is nothing but the continuity equation for the thermal energy
(divided by its heat capacity) p = T with an additional idea that the heat flux
vector or heat flow goes along the slope of the temperature field: 7= xVT.

2.3 Diffusion

The heat conduction equation is just one example of diffusion equations. For
example, the diffusion of gas is described by
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where n is the number density, D the diffusion constant. The conserved
quantity is the total number of gas molecules

N= / v n, (11)
and the current is j’= DVn.

2.4 Electromagnetism

Another example is in the electromagnetism. Look at the Maxwell’s equa-
tions,
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VxE = —B, (14)
V-B = 0. (15)

The electric charge density p and the electric current density 7 appear. By
taking the time derivative of the first equation, we find
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while the divergence of the second equation is
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Note that V- (V x B) = 0, and hence the second equation becomes
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Comparing Eqs. (16l18)), we find that the Maxwell’s equations are consistent
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Of course, ¢* = 1/(g€p) and this is nothing but the continuity equation. The
conserved quantity is the total electric charge,

Q=[ avp. (20)
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The continuity equation can be written in a manifestly Lorentz-invariant
fashion. The charge density and the current form a four-vector

J= (Cp,j), (21)

and together with z# = (ct,#) and hence 0, = (%&,6), the continuity
equation becomes

gt = 0. (22)
2.5 General Relativity
Einstein’s equation is
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where R* is the Ricci curvature tensor, ¢g"” the metric tensor, and R =
g M the Ricci scalar curvature. The right-handed side of the equation is
the source for the gravitational field T*”, the energy-momentum tensor.

Similarly to the Maxwell’s equations, the Einstein’s equation is consistent
only if the energy-momentum tensor is conserved,

v, " =0, (24)

where V,, is the covariant derivative, a generalization of the divergence to
curved spacetime.

2.6 Quantum Mechanics

In quantum mechanics, p = 1*9 is the probability density, namely the prob-
ability to find the particle in a given spatial volume element. The particle is
supposed to be somewhere in the whole space, and hence the total probability
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is 100%. If this is the case at a given moment, it should stay that way for
the rest of the evolution; it is supposed to be somewhere in the whole space
anytime. What it means is that the total probability is conserved, and hence
OP/0t = 0. Another equivalent statement is that, once the wave function is



normalized, it stays normalized forever. This is a consequence of the unitarity
of the time-evolution operator,

(e, ) = (0, 0[e™) (7M1, 0)) = (1, 01¢,0).  (26)

It sounds funny to say that the probability is conserved, but it has to be.
Correspondingly, there must be a probability current. What we are looking
for is the current 7'that satisfies the continuity equation Eq. (1)) with p = ¥*.
In the case of a free particle, together with the Schrodinger equation,
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By inspection, we find
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For the plane wave 1) = e7#/" /(27h)3/2 we find
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One important caveat is that this form of the probability current may
not be true depending on the form of the Hamiltonian, e.g., the presence of
the vector potential, if the wave function has more than one particles, etc.
The explicit form needs to be determined knowing what the system is.
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