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Midterm

1. Particle on a circle

.2 .2
(a) Into the Lagrangian of a point particle L = % m(x +y ) we substitute in x = Rcosf, y = Rsinfl. Because the particle

is always at the radius R, x =—R 651n6 y=R 6 cos , and hence L = = m R? 0.

(b) The canonical momentum is given by its definition, p, = & = m R2 §. The Hamiltonian is
a6
2
H p99 L p9 m R2 _—mRz(mRz) :2mR2'

(c) The Heisenberg equation of motion is

in 5 0=10.H] =0, 22| = in L

2
ih 5 po = [po. H1= [po. 22| = 0.
The solution to the second equation is simply that p, () = pg(0) is conserved, and hence
0(t) = 6(0) + ” v

(d) The position-space wave function is {8 | py | k) = Ll’ % k) =1k{8]| k), and hence y(0) = (| k) = N e'*?. To normal-
ize it, we require fozﬂ | y(@) ?Pdf=2nN* =1, and hence N = 1/\/27r, w() = ﬁ e*? . In order to satisfy
Y(0+ 2 ) = Y(6), namely e?™ % =1, we need k to be an integer.

(e) The Schrodinger equation is

ih L@ =@lind|v)y=(0] L |¥)= 5 (2 ) O19) = — 5l Ly (o).

Its complex conjugate is

~it Ly (0) = — 51 2y (6.
Using them we find

. . o 3
ﬂt P=% sy =yl 2mR2 mZ lﬂ) (-i ZerRZ %w*)‘p‘ 089 Z:nf}?z (v %_ (;1/9 )=~ -
For the state | n), we find

1
P=77
is a constant for the entire circle, while
. h eminb ., einf . emint i nf nh
S = TR (m (l” m) _(_l” m) m) = ZamR?

Therefore the probability current is constant flow along the circle depending on the value of 7.

(f) The orthonormality is simply
ngind im0

2r 2 ¢ 1 2T iome
(n|m>—£ n|6ydo@|m= f Tl \/ﬁdg—2—7r b emmogg,

When n = m, the integrand is unity, and hence (n | n) = ﬁ 2 =1 and is normalized.
2
Whenn# m, (n|m) = 5k [Teimm0d 6= L ’

iuwnw] _ ﬁ[ 1 _ ] 0 and are orthogonal.

i(m-n) o i(m—n) z(m n)

(g) With the vector potential, there is an additional term to the Lagrangian
Ly =qAv=q(Ax+A,y)=¢qL & (yRQsm 0+xR00059) 1qBdo.

Therefore, the total Lagrangian is
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L= mR2 0 + = q B d? 9
and hence the canonical momentum is modified as

pg:i:mR26+%qu2.
)
The Hamitonian is therefore
. 1 2 1 2 \2 i
_ gy _ . oz aBd® 1 o py—7qBd 1 2 w-74B&
H—pgﬂ L—p() mR? 2mR mR? +2qBR m R?

1 1 1 1 1 2 1 1 2
=— (P’ —59Bd py—5py°+59Bd pg— 5 (qBd*) - 5 qBd” pg+ 7 (¢Bd*)")

= (L= LB py+ L (qBdY = i (py— L qBa?) .
The eigenvalues of the canonical momentum is still pg = n# because of the periodicity requirement, and hence the energy
eigenvalues are

En = 2mlR2 (nh_ 5 quz)
Even though the particle never "sees" the magnetic field, the energy eigenvalues are affected by the vector potential,
another manifestation of the Aharonov-Bohm effect. Note also that the result depends only on the total magnetic flux

@ Brd* :
4= = 47— modulo integers.

2. Probability current

As we discussed in the class, the Hamitonian of a point particle in the presence of vector and scalar potentials is
2

H= (p qA) +q¢.
The Schr'(')dmger equation is therefore
- 52
D f
ih gy = (ﬁ (£v-q4) +q¢)w,

and its complex conjugate is
2

ity = (2 (25 -a4) +ad)y,

Therefore,

~———

. 52 -2 > /> - > - o > o
=%(uf{v w)—(v w*)w—i-;fw*V-(Aw ~i 4V (Ay )y i gyt ATy - %A-(Vw*)w)
= VL (g (V) - (Vo )y -2i £y Ay)

The conserved probability current is then
J = o (0 (V0)~ (Vo Ju—2i Ly Av)
:ﬁ(w*(?%—q:x)ww;f’g—q:x)ww)

Under the gauge transformation, A' = A =V A, ¢' = e 4™y we can see
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-

(0o~ (3T

= e—“fA/ﬁG V-gVA-qA+ qVA) U= e—"qA/"’(é Vg A) v.
Therefore, the probability current is transformed to

= 7112 (eiqA/ﬁ v e—iqA/h(? Vg A)w+eiq/\/h(;[fi V—qA)w* e—iq/\/h‘p) =
and hence is gauge invariant.

3. Landau levels

@)

UL, IL] = [py —e A, py —€ Al = —e[px, Ayl +elpy, Al =— 6 Ay t+e 6 A, =ieh B. Therefore,
[a,at] = [l'IX+iI'[y,1'Ix—il'[y]—2 (=21[I1,, I, ]) = (- 2zzehB)—1

(b)

1
2¢hB hB ZefB

Let us first work out a’ a = ﬁ(nx i) (I + i 10y) = 2eﬁ (I’ +Hy +illl;, IIy]) = 2LhB (I’ +H> —ehB).
Therefore,
H= 2m (L% + 11,° —Zm(ZehBa a+ehB)= (Ta+_;),

(c)

The ground state wave functions must satisfy a|0) =0 just like a harmonic oscillator. Note that

a= W (px—eAc+i(py —e Ay) =
B ﬁ _ ﬁ _ _—ih eB . — _cih
V2ehB ( a te y+l( e .X')) \/_ ((a +i0 )+ 2h (x+l)’)) \/m (26+ Z) B
where § = E =1 > (0y +16 ). Below we also use the notation d = a_ = % (8,—idy) so that 47 = 6z =0,97=0z7 =

The ground state wave functions therefore satisfy
@+ 55 2)Y(z,2)=0
Writing ¥(z, 2) = ¥' (z, 2) e 874" we find
0=@+ 57 DY @ e P =By (2, 7)) P
Therefore, any function ' (z, 7) that satisfies 9y' (z, z) = 0, namely a function of z only with no dependence on z would
satisfy the equation. In particular, ' = z"is a solution for any 7.

_ 2
2n EeBr /(2 h)

Be
Integrate[2 nrr , {r, 0, ®}, Assumptions ->Re[n] > -1&& Re[—ﬁ ] >0]

-1-n
21*“7T<B7e) Gamma [l + n]

112
Therefore, N = (n!7r(%)n+ ) .

(@)

Take eB/2#% = 1. Then, ¢, = (n! m) "> 2" ¢2¥?. Therefore,
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In[15]:= ContourPlot[(n! x)~! £2® ET /. {r->Vx2+y2}/.{n>0},

{x, -4, 4}, {y, -4, 4}, PlotPoints » 100, PlotRange » {0, —}]
T

il

-4t
-4 -2 0 2 4
Out[15]= = ContourGraphics -
In[16]:= ContourPlot[(n! x)™! r2® ET /. {r->Vx2+y2}/.{n>3},

{x, -4, 4}, {y, -4, 4}, PlotPoints—»lOO]

- ContourGraphics -

Oout[16]=
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In[17]:= ContourPlot[(n! x)~! £2® ET /. {r->Vx2+y2}/. {n>10},
{x, -4, 4}, {y, -4, 4}, PlotPoints -» 100]

Out[17]= = ContourGraphics -

Plot3D[(n! m) ' 2* E¥ /. {r->Vx2+y2} /. {n>0},

In[11]:

1
{x, -4, 4}, {y, -4, 4}, PlotPoints -» 100, PlotRange - {0, —}]
b

out[11]= = SurfaceGraphics -
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In[12]:= Plot3D[(n! x)t r2® E* /. {r-> Vx2+ y2 } 7. {n>3},
{x, -4, 4}, {y, -4, 4}, PlotPoints -» 100]

Oout[12]= = SurfaceGraphics -

In[13]:= Plot3D[(n! m)* " E* /. {r->VxZ+ ¥ } /. (n> 10},
{x, -4, 4}, {y, -4, 4}, PlotPoints - 100]

Moy Y
T
\

out[13]= = SurfaceGraphics -

(e)

The wave function forms a ring further and further away from the orign for larger and larger n. If the system has a finite
radius R, the ring goes outside the system for too large n. This sets a maximum value on 7, and hence there are only a
finite number of ground states. To obtain the maximum n, we require that the peak of the probability density is less than R.
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Solve[D[ (r® E°B/(4h) )2 ,x] =0, r|

{{r%_\/fvﬁﬁ 1 ﬁ\/H\/E}}

NENVE NV L NNV
\/B e \/B +Je
. . . . 2 .
For this radius to be inside the system, % <R? ,and hence n < el;f . The number of ground states is therefore

1 2
WEBR .
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)

Using the expression a = —2— (23 + <£ 7), we find
g p TR 55 s
o Blr 5D o0 3arn —in = eB —e B(z7-2120 2420 %
ae e B(z2-220 2+20 29)/4h _ Z;ﬁB (26+ ;h e e B(z2-2 20 7+20 7y)/4h
= ——if D B eB ) p—e B(zz-2 1 2420 20)/4 h
= —255(@-2z0)+ 55 De 0%
—ih eB —e B(z2-2 29 2420 Zo)/40
= >+ 2z20e”¢ 0 Z¥20 %
V2eng 2% <%0
. B — 5 > >
- _l\/g_h z0€ e B(zZ-2 20 2+20 %)/ 4h

Therefore, this wave function is an eigenstate of the annihilation operator with the eigenvalue —i % 2 ,and can be
regarded as a "coherent state" in analogy to the harmonic oscillator case.

The uncertainties of the wave function are calculated the usual way. The probability density is

[ Y2 = Ny? e ¢BQ22-220 5225 +220 %)/4h = N, % ¢ Be=0)@%)2% gand hence is a Gaussian. Rewriting it in terms of Cartesian
coordinates, | > = Ny2 e ¢B(—x0)"+0=y0))2h  for z5 = xy +iy,. Therefore, we find (x)=x5, (¥) =y,

(Ax)? = (x— xo))2 = %, (A y)2 ={(y - yo))2 = :’—B . To calculate expectation values of the momentum, we first rewrite
the wave function as i = No e~ B2 00 4iw) (i v WAy = B 2B (5 (v xy) —2iyo) . Therefore,

(pry=2 ZE (x—xo—iyoy= % FE (—iyo) =L y. Similarl;zz, py=2 %(2@—yo)+22ix0)¢, and
(p,)=—xo. Finally, (p. )= [ [dxdy|p,wP = [[dxdy(S) (x—x)* +yo) |¥[* = () (L + 32,

2
and hence (Ap) =) L. Similarly,

2 2
(py?)= [[dxdylp,y|? = [[dxdy (“£) (x> + ( —y0)) | ¥ P = (&) (x> + 25),
and hence (A py)2 = (% )2 ZLB as well. The uncertainty relations are (Ax) (A py) =% /2, (Ay) (A py) = /2, and this state

is a minimunm uncertainty state.

acceptable solution

In the Heisenberg picture, we solve the equations of motion
ih g7 x =[x, H = 5 (pc— eAd) = 2 (pa+ V),

ih o y=ly, Hl = 3 (py = eAy) = 3t (py = F ),

4 pe = [po Hl = 22 (py - 3 1) (-5,

o d —ih
ih o= py = [py, Hl = 5= (px + 5 9) (2).
Taking another time derivative,

& d 1 eB 1 eB eB eB 0 eB d
Wx_ﬁ%(px"'Ty):H(W(p}'_Tx)"'Ta_ty):Tﬁy’
s 1 ¢B eB ¢B d eB d
Fy_ﬁ(_ﬁ(pX"'Ty)_TEx) T

Therefore, the solution is

(1) = x(0) + — (x(0) sinw ¢ +y(0) (1 - cos w 1)),

y(®) = y(0)+ L (=x(0) (1 - cos w 1) + Y(0) sin w 7).

For our coherent state wave function, the initial values are given by

(x(0)y = x0, (YO)) =30, (M0)) = = Px + L V)= w)n, (WO) = 5 (py -
We find the expectation values as the function of time,

x (®))=x0+ (yosinwt —xo (1 —cosw 1)) = x cos wt+ yosinwt,

eB _
S X)=—WXp.

G @) =yo+ (—yo(1 —coswit)— xo sSinw t) = —xp Sin Wt +yo COS W 1.
This shows that the expectation values undergo the classical cyclotron motion, as expected from the Ehrenfest theorem
(Sakurai, p.87).

However, this calculation does not say anything about how the shape of the wave function evolves in time, if it comes back



midterm.nb

to the original one over time, etc. Any detailed information can be obtained by calculating {(x*), (x’), etc, namely an
infinite number of expectation values. But for that purpose the next approach would be better.

ideal solution with five bonus points
Using the expression a' = #:B o- % 2, we can see
e VeB2hc 7 d e ¢ B4 _ 620(8—% H

~eBzz/Ah _ a0 (=557 pme Bad4h _ ,-e B(zz-25 /AN

) e , and this is the coherent state up to a

constant. Under the time evolution, it changes to
i Hilh g=iVeB2hc 2 d p-eBzydh _ p=i Hifh p=iVeB[2he 20’ piH t/h p=i Hi/h p—e Bzz/Ah

— piVeBR2hczyd el miwi)2 ,-eBzz/4h

Here, we used the fact e H!/h gt ¢l Hi/h = gt ¢=i@t Therefore, up to the overall phase factor due to the zero-point energy,
the time evolution is simply a change of 7y — zo e~ ¢! in the wave function e~¢B(z=22 ¢ 220 0)/4% [t is always a Gauss-
ian of the same form, but the center moves as z =z, e/®!, or x = x; COS W! + Yo sin W, y =—X, Sinw ¢ + y, cos wt,

rotating clockwise on the complex plane of z around the origin.
One can see the time-dependence of the wave function by plotting the probability density over time:

[ P = N2 e=¢ Bl=20)"+0-30))2% with x, = Re(zy e~ "), yo = Im(zg e ). Take e B=h =1, w=m~ =27, 7y =5.
Execute the following command, select the following plots together, and go to "Cell" and "Animate Selected Graphics")

1
In[18]:= Table[ContourPlot[z— Exp[-((x-5Cos[2nt])%+ (y+58in[27t])?) /2], {x, -10, 10},
T

1
{y, -10, 10}, PlotPoints - 50, PlotRange - {0, }], (£, 0,0.9,0.1}]
T
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10

-10 -5 0 5 10

-10

out[18]= {-ContourGraphics -, - ContourGraphics -, - ContourGraphics -,
- ContourGraphics -, - ContourGraphics -, - ContourGraphics -,
- ContourGraphics -, - ContourGraphics -, - ContourGraphics -, - ContourGraphics -}

(@),

For an electron, the "Physical Constants" table from the PDG says the Bohr magneton is
B = 5 =579%10"" MeVT™. The excitation energy is A E = <22 =1.16x 10 eV for B = 100kG=107. The

corresponding thermal energy is A E/k=1.16x10"" eV /8.62x 107 eVK™' = 13.4K. At temperatures below a few
kelvin, pratically all electrons populate the ground states.

4. Scalar Aharonov-Bohm

In this experiment, a magnetic field is applied for At = 8 usec on neutrons whose magnetic moment is
p=—-191puy =-191x3.1510"*MeV I! =-6.02x10""*MeV T~'. The relative phase between two waves is
(following Eq. (3)),

ADpg =  p BAt = oo (—=6.02x107 MeVT ™) Bx 8 x 107 sec =7.32x 10” (B/T) = 0.0732 (B/ Gauss).
The fit to the data shown in Fig. 5 says A ® ,p / B = 0.0657 / Gauss, quite a good agreement with the expectation.

Fig. 2.4 in Sakurai's shows an electric potential, which has an electric field at the edges and hence forces. The reason why
they chose to turn on and off the magnetic field is to avoid the possible criticism that a specially non-uniform field gives a
non-uniform potential and hence a classical force. The purpose of the experiment, on the other hand, is to demonstrate the
quantum phase in the absence of any classical force. Furthermore, they wanted to avoid the torque acting on the neutron
spin, and therefore polarized the spins along the direction of the motion which is parallel to the magnetic field
("longitudinal polarization"). This way, they were sure that there is absolutely no classical force acting on neutrons, yet
they showed the quantum phase, the scalar Aharonov-Bohm effect.



