## HW #5 (221A), due Sep 29, 4pm

- 1. Answer the following questions on the harmonic oscillator  $H = \frac{P^2}{2m} + \frac{1}{2}m\omega^2 X^2$ .
  - (a) Verify that the Hamiltonian can be recast to the form  $H = \hbar\omega(N + \frac{1}{2})$ , where  $N = a^{\dagger}a$  and  $a = \sqrt{\frac{m\omega}{2\hbar}} \left(X + i\frac{P}{m\omega}\right)$ .
  - (b) Write down the condition for the ground state  $a|0\rangle = 0$  in the position representation, solve it analytically, and normalize it properly. Plot the shape of the wave function.
  - (c) Work out the wave functions of the first- and second-excited states  $\langle x|1\rangle$  and  $\langle x|2\rangle$  using the ground state wave function and the creation operator. Pay attention to the normalization. Plot the shapes of the wave functions.
  - (d) Without using the explicit forms of the wave function, calculate  $\langle X \rangle$ ,  $\langle (\Delta X)^2 \rangle$ ,  $\langle P \rangle$ , and  $\langle (\Delta P)^2 \rangle$  for the state  $|n\rangle$ .
  - (e) Verify that the coherent state

$$|f\rangle = e^{fa^{\dagger}}|0\rangle e^{-|f|^2/2} \tag{1}$$

is a normalized eigenstate of the annihilation operator  $a|f\rangle = f|f\rangle$ . Note that f is in general a *complex* number.

- (f) Calculate  $\langle X \rangle$ ,  $\langle P \rangle$ ,  $(\Delta X)^2$ , and  $(\Delta P)^2$  for the coherent state, and verify that it is a minimum uncertainty state (i.e.,  $(\Delta X)(\Delta P) = \hbar/2$ ).
- (g) (optional) Show that

$$\langle x|f\rangle = \left(\frac{m\omega}{\pi\hbar}\right)^{1/4} \exp\left(-\left(\sqrt{\frac{m\omega}{2\hbar}} |x-f|^2 + \frac{1}{2}(f^2 - |f|^2)\right)\right)$$
(2)

is a solution to the equation  $a|f\rangle = f|f\rangle$  in the similar way as in part (b).

(h) Using the solution to the Heisenberg equation of motion (Eq. (2.3.45) in Sakurai), calculate the expectation value of the position  $\langle f|X(t)|f\rangle$  and the momentum  $\langle f|P(t)|f\rangle$  in the Heisenberg picture. It is precisely what is expected in classical mechanics.

- (i) (optional) To see the shape of the wave function, we'd rather use the Schrödinger picture. Show that  $|f,t\rangle = U(t)|f\rangle = |fe^{-i\omega t}\rangle e^{-i\omega t/2}$ .
- (j) Using the wave function Eq. (2), and taking  $f = \sqrt{\frac{m\omega}{2\hbar}} x_0 e^{-i\omega t}$ , plot the probability densities at constant time intervals so that you can observe the motion of the wave. (If you use Mathematica, you can watch them in animation.)
- 2. (optional) For the Gaussian wave packet

$$\psi(x) = \langle x | \psi \rangle = N e^{ipx/\hbar} e^{-(x-x_0)^2/4d^2}, \tag{3}$$

you have seen in the previous homework that  $\langle \psi | X | \psi \rangle = x_0$ ,  $\langle \psi | P | \psi \rangle = p$ ,  $\langle \psi | (\Delta X)^2 | \psi \rangle = d^2$ ,  $\langle \psi | (\Delta P)^2 | \psi \rangle = \hbar^2/4d^2$ . We now consider its time evolution. The Hamiltonian is that of a free particle,  $H = P^2/2m$ . Using the momentum space wave function from the previous homework  $\phi(q) = \langle q | \psi \rangle$ , the state is expanded as a linear combination of the momentum eigenstates  $P | q \rangle = q | q \rangle$  as  $| \psi \rangle = \int dq | q \rangle \langle q | \psi \rangle$ . Therefore, the time evolution operator gives simply

$$|\psi,t\rangle = e^{-iHt/\hbar} \int dq |q\rangle\langle q|\psi\rangle = \int dq e^{-iq^2t/2m\hbar} |q\rangle\langle q|\psi\rangle$$
 (4)

- (a) Work out the wave function at a later time  $\psi(x,t) = \langle x|\psi,t\rangle$ .
- (b) Show that the expectation value of the position moves as  $\langle \psi, t | X | \psi, t \rangle = x_0 + \frac{p}{m}t$ .
- (c) Show that the wave packet spreads out over time by calculating  $\langle \psi, t | (\Delta X)^2 | \psi, t \rangle$ .
- (d) Write down the Heisenberg equations of motion and solve them.
- (e) Using the solution to the Heisenberg equations of motion, calculate  $\langle \psi | X(t) | \psi \rangle$  and  $\langle \psi | (\Delta X(t))^2 | \psi \rangle$  in the Heisenberg picture and compare the results to the ones obtained above in the Schrödinger picture.