Dirac Delta Function

1 Definition

Dirac’s delta function is defined by the following property
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if 0 € [t1, 2] (and zero otherwise). It is “infinitely peaked” at ¢t = 0 with the
total area of unity. You can view this function as a limit of Gaussian
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The important property of the delta function is the following relation
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for any function f(¢). This is easy to see. First of all, §(¢) vanishes everywhere
except t = 0. Therefore, it does not matter what values the function f(t)
takes except at ¢ = 0. You can then say f(¢)d(t) = f(0)o(¢). Then f(0)
can be pulled outside the integral because it does not depend on ¢, and you
obtain the r.h.s. This equation can easily be generalized to
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Mathematically, the delta function is not a function, because it is too
singular. Instead, it is said to be a “distribution.” It is a generalized idea
of functions, but can be used only inside integrals. In fact, [ dtd(t) can be
regarded as an “operator” which pulls the value of a function at zero. Put it
this way, it sounds perfectly legitimate and well-defined. But as long as it is
understood that the delta function is eventually integrated, we can use it as
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if it is a function. One caveat is that you are not allowed to multiply delta
functions whose arguments become simultaneously zero, e.g., §(t)%. If you
try to integrate it over ¢, you would obtain §(0), which is infinite and does not
make sense. But physicists are sloppy enough to even use §(0) sometimes, as
we will discuss below.

2 Fourier Transformation

It is often useful to talk about Fourier transformation of functions. For a
function f(t), you define its Fourier transform
eits
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This transform is reversible, i.e., you can go back from f (s) to f(t) by
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You may recall that the patterns from optical or X-ray diffraction are Fourier
transforms of the structure. For example, Laue determined the crystallo-
graphic structure of solid by doing inverse Fourier-transform of the X-ray
diffraction patterns.

If you set f(t) = d(¢) in the above equations, you find
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In other words, the delta function and a constant 1/+/27 are Fourier-transform
of each other.
Another way to see the integral representation of the delta function is
again using the limits. For example, using the limit of the Gaussian Eq. (3),
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3 Position Space

Dirac invented the delta function to deal with the completeness relation for
position and momentum eigenstates. The eigenstate for the position operator
x
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must be normalized in a way that the analogue of the completeness relation
holds for discrete eigenstates 1 = 3, |a){(a|. Because the eigenvalues of the
position operator are continuous, the sum is replaced by an integral
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For the case of the discrete eigenstates, using the completeness relationship
twice gives a consistent result because of the orthonomality of the eigenstates

(@]a") = b

1 = 1x1= <;|a,><a’|> <;|a”><a~>
= 3 (@]

e Z ’a,/>5a/7a//<a”’

a/’a//

= Ll = 1. (14)

Therefore, we need also the states |z') to be orthonomal. To see it, we try
the same thing as in the discrete spectrum
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Now we can determine what the “orthonomality” condition must look like.
Only by setting (2/|2" = §(a’ — 2”"), we find

1 = / da'da”|2")o (2" — 2") (2"
_ /dx'\x'><x'y:1. (16)
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At the last step, I used the property of the delta function that the integral
over x” inserts the value 2”7 = x’ into the rest of the integrand. This is why
we need the “delta-function normalization” for the position eigenkets.

It is also worthwhile to note that the delta function in position has the
dimension of 1/L, because its integral over the position is unity. Therefore
the position eigenket |2') has the dimension of L~/2.

4 Momentum Space

As you see in Sakurai Eq. (1.7.32), the eigenstates of the position and mo-
mentum operators have the inner product

1 o] !
Hoyl\ — i’z [h 17
(W) = e (1

From this expression, you can see that the wave functions in the position
space and the momentum space are related by the Fourier-transform.
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The completeness of the momentum elgenstates can also be shown using
the properties of the delta function.
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The last integral, after changing the variable from p’ to k = p/h, is nothing
but the Fourier-integral expression for the delta function. Therefore,
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This proves the completeness of the momentum eigenstates.
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