
221A Lecture Notes on Spin

This lecture note is just for the curious. It is not a part of the standard
quantum mechanics course.

1 True Origin of Spin

When we introduce spin in non-relativistic quantum mechanics, it looks ad
hoc. We just say we add an additional contribution to the total angular
momentum. What actually is it?

The cartoonish explanation is that particles are spinning like a top. Spin
is said to be an intrinsic property of quantum mechanical particles. Spin
never stops. Spin never increases. All it does is to change its orientation.

The true meaning of spin has to be discussed in the context of fully
Lorentz-invariant theory. To the best of our understanding, a fully Lorentz-
invariant quantum theory means relativistic quantum field theory. In such
formulation, we introduce a field to every particle species, which transforms
under the Lorentz transformations in a particular way. Therefore, the issue
is to pick a particular representation of the Lorentz transformations. Once
that is done, it specifies spin. After quantizing the field, you find that the
field operator can create or annihilate a particle of definite spin. We will see
this from Dirac equation and Maxwell equation in 221B.

Because the spin is already a part of the field, you can’t say that you’ve
added spin to the total angular momentum. It is there from the first place.
In popular science magazines, you may say that spin is like the particle
spinning around its axis just like the Earth does. Well, it is indeed like
that. But you can’t push this picture too far. Lorentz tried to buid a theory
of electron assuming that it is a sphere of finite radius. Then you may be
able to understand its mass, or its rest energy (remember E = mc2!), as
an electrostatic energy of concentrated negative charge. Then the radius
must be roughly re ∼ e2/(mec

2) ∼ 10−13 cm. Imagine further that this
sphere is spinning. To obtain the spin of h̄/2, a dimensional analysis suggests
merev ∼ h̄, where v is the speed of rotation at the surface of the sphere. Then
we find v ∼ h̄/(mere) ∼ h̄c2/e2 ∼ 137c� c! Well, it just doesn’t work.

Of course spins can indeed come from certain internal structure. The
spins of atoms are the sum of nucleus and elelectron spins together with the
orbital angular momenta. The spins of nuclei are the sum of proton and
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neutron spins together with the orbital angular momenta. The spin of the
proton is the sum of quark spins (with no apparent contribution from the
orbital angular momentum). But you still ask: where do the quark spins
come from? The best answer is that when you get a quark by quantizing a
quark field, the field already carries spin. It is just a property already there
when you introduce a field.

How do we choose spin when you introduce a field, then? A consistent
(i.e., renormalizable) quantum field theory can include only spin 0, 1/2, and
1. Renormalizable interactions are only those interactions that can appear
without extra suppressions of GNE

2/h̄c5 = (E/1019 GeV)2 � 1. Therefore,
there is a reason why we see only particles of spin 1/2 and 1. Well, what
about spin 0? We have not seen any fundamental particle of spin 0 yet. We
are looking for one: the Higgs boson, which is expected to permeate our
entire Universe, dragging the foot of all quarks, leptons, W and Z bosons,
making it impossible for them to reach the speed of light. It is expected to
be found this decade thanks to higher-energy accelerators being built. Once
it is found, it exhausts all theoretical possibilities of spin 0, 1/2, and 1.

What about gravity? If you manage to quantize gravity consistently, you
will find a spin 2 particle: graviton. The trouble is, to this date, nobody
managed to do this. It doesn’t give you a renormalizable theory, or in other
words, you get all kinds of seemingly meaningless infinities you don’t know
how to get rid of. But we know one thing: even at the classical level, fields
with spin higher than 2 cannot have interactions consistently. You find there
are way too many components of the field you can’t get rid of, and the theory
becomes unphysical (i.e., sick).

The string theory is arguably a consistent theory of quantum gravity.
There are no elementary particles; what we think are particles are actually
string curled up to a tiny size. It predicts that there are states with arbitrarily
higher spins, but their masses are all up at the Planck scale, 1019 GeV/c2.
High spins come out because the string can spin around. All our lowly
existence must be made up of lower spin states, where only particles of spin
above 1 are the graviton (spin 2) and its superpartner gravitino (spin 3/2).
We are not supposed to see higher spin particles unless somebody figures
how to produce these “particles” as heavy as bacteria.

The rest of this note is devoted to (somewhat academic) discussions on
how you can view spin as an additional degrees of freedom for a particle. They
may give you more insight into the nature of spin and angular momentum in
general.
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2 Classical Lagrangian for Spin

It is possible to obtain any spin from a Lagrangian. Spin always has a
fixed size and keeps spinning eternally. If you imagine spin as a little arrow
with fixed length sticking out from the particle, the dynamical degrees of
freedom are at which direction it is pointing out. Therefore, it is reasonable
to expect that dynamical variables are polar and azimuthal angles θ and φ.
We imagine that every particle comes together with this “arrow” in addition
to its position and momentum. The rest is the actual construction.

You take the phase space to be a surface of a sphere (S2) parameterized
by the polar angle θ and the azimuth φ, and take the action

S = J
∫

cos θφ̇dt. (1)

Note that the sphere is not the coordinate space but the phase space. Corre-
spondingly, the Lagrangian has only one time derivative, not two. This term
corresponds to

∫
piq̇idt in more conventional systems. You can regard φ to be

the “canonical coordinate”, while J cos θ to be the “canonical momentum.”
The important difference from other systems is that this phase space has a
finite volume. Because, semi-classically, the number of states is given by the
phase space volume in the unit of 2πh̄ per degree of freedom, a finite-volume
phase space implies a finite dimensional Hilbert space. On the other hand, S2

is invariant under three-dimensional rotation, and the symmetry guarantees
that there arises angular momentum operators with the correct commutation
relations.∗

Once we add this term to the Lagrangian of a point particle, it can de-
scribe a particle with spin J . I emphasize that θ and φ form an additional
phase space, in addition to the particle’s ordinary phase space (~x, ~p).

The Poisson bracket is

{φ, J cos θ} = 1, (2)

or in other words, it is defined by

{A,B} = − 1

J sin θ

(
∂A

∂φ

∂B

∂θ
− ∂A

∂θ

∂B

∂φ

)
. (3)

∗If you are familiar with differential geometry, this is where this expression for the
action comes from. You first write the volume form ω = J sin θdφ ∧ dθ. This is clearly
invariant under rotations. Because ω is closed, you can write it locally as an exact form
ω = dχ = d(J cos θdφ). Then the action is S =

∫
χ. This construction guarantees that it

is rotationally invariant up to a surface term.
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From this definition, we can work out the Poisson brackets among

Jx = J sin θ cosφ, (4)

Jy = J sin θ sinφ, (5)

Jz = J cos θ. (6)

We find

{Jx, Jy} = − 1

J sin θ
((−J sin θ sinφ)(J cos θ sinφ)

−(J cos θ cosφ)(J sin θ cosφ)) = J cos θ = Jz, (7)

{Jy, Jz} = − 1

J sin θ
((J sin θ cosφ)(−J sin θ)) = J sin θ cosφ = Jx, (8)

{Jz, Jx} = − 1

J sin θ
(−(−J sin θ)(−J sin θ sinφ)) = J sin θ sinφ = Jy.(9)

Or with tensor notation,

{Jk, Jl} = εklmJm. (10)

We can also add a Hamiltonian to it. For instance, the magnetic moment
interaction in a constant magnetic field is

H = −~µ · ~B = −µ(Bx sin θ cosφ+By sin θ sinφ+Bz cos θ) = −µ
J
~B · ~J. (11)

The corresponding action is

S =
∫

(J cos θφ̇+
µ

J
~B · ~J)dt. (12)

The Hamilton equation of motion is

dJk

dt
= {Jk, H} = −µ

J
{Jk, BlJl} = −µ

J
BlεklmJm, (13)

or with vector notation,
d ~J

dt
= −µ

J
~B × ~J. (14)

This is indeed the equation for spin precession.
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3 Quantum Theory of Spin

In this section, we quantize the classical action for spin introduced in the
previous section. This type of construction of quantum spins had actually
been used in Haldane’s theory of anti-ferromagnetism in one-dimensional spin
chain.

3.1 Allowed Values for J

We first write J = jh̄ for later convenience,

S = jh̄
∫

cos θφ̇dt. (15)

It is easy to see that 2j must be an integer, following the same type of argu-
ments as the charged quantization in the presence of a monopole. Consider
a closed path C on the phase space, and its action

S = jh̄
∮

C
cos θdφ. (16)

It can be rewritten as a surface integral using Stokes’ theorem over a surface
M (∂M = C),

S = jh̄
∫

M
sin θdφdθ. (17)

But there are two choices for M on each side of the loop. The difference
between two choices is nothing but the integral over the entire sphere,

∆S = jh̄
∫

S2
sin θdθdφ = jh̄4π. (18)

We want eiS/h̄ to be single-valued, and hence ei∆S/h̄ = 1. It means 4πj = 2πN
(N ∈ Z), or 2j = N .

3.2 Angular Momentum Operators

When quantizing it, we have to pay a careful attention to the ordering of the
operators. The definition of Jz = jh̄ cos θ remains the same as in the classical
case. The problem is that sin θ and φ do not commute in the definition of
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Jx, Jy. You have to go through a bit of trial and error to get a consistent
definition. In the end, here is what you need:

J+ =
√
jh̄(1 + cos θ) eiφ

√
jh̄(1− cos θ), (19)

J− =
√
jh̄(1− cos θ) e−iφ

√
jh̄(1 + cos θ). (20)

To the extent you ignore the ordering, this is consistent with the classical
expressions J± = J sin θe±iφ. We will see why this works by checking the
commutation relations. The canonical commutation relation is

[φ, jh̄ cos θ] = ih̄. (21)

From this, we can say that

jh̄ cos θ ' h̄

i

∂

∂φ
, (22)

where the reason for ' but not = becomes clear later. Then clearly,

[Jz, e
±iφ] = ±h̄e±iφ. (23)

Given this, it is easy to verify [Jz, J±] = ±h̄J±. The tricky one is [J+, J−].
Paying careful attention to the ordering of operators,

[J+, J−]

=
√
jh̄(1 + cos θ) eiφ

√
jh̄(1− cos θ)

√
jh̄(1− cos θ) e−iφ

√
jh̄(1 + cos θ)

−
√
jh̄(1− cos θ) e−iφ

√
jh̄(1 + cos θ)

√
jh̄(1 + cos θ) eiφ

√
jh̄(1− cos θ)

=
√
jh̄(1 + cos θ) eiφjh̄(1− cos θ)e−iφ

√
jh̄(1 + cos θ)

−
√
jh̄(1− cos θ) e−iφjh̄(1 + cos θ)eiφ

√
jh̄(1− cos θ)

=
√
jh̄(1 + cos θ) eiφe−iφ(jh̄(1− cos θ) + h̄)

√
jh̄(1 + cos θ)

−
√
jh̄(1− cos θ) e−iφeiφ(jh̄(1 + cos θ) + h̄)

√
jh̄(1− cos θ)

=
√
jh̄(1 + cos θ) (jh̄(1− cos θ) + h̄)

√
jh̄(1 + cos θ)

−
√
jh̄(1− cos θ) (jh̄(1 + cos θ) + h̄)

√
jh̄(1− cos θ)

= 2jh̄2 cos θ = 2h̄Jz. (24)

This is exactly what we need.
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The above calculation also allows us to obtain ~J2,

~J2 = J2
z +

1

2
(J+J− + J−J+)

= (jh̄ cos θ)2 +
1

2

[√
jh̄(1 + cos θ) (jh̄(1− cos θ) + h̄)

√
jh̄(1 + cos θ)

−
√
jh̄(1− cos θ) (jh̄(1 + cos θ) + h̄)

√
jh̄(1− cos θ)

]
= j(j + 1)h̄2. (25)

3.3 Wave Functions

We have to avoid any sorts of singularities, making sure that pidqi is well-
defined. It turns out, however, cos θdφ is not well-defined where cos θ =
±1, or at poles. There, anything proportional to dφ must vanish because
φ loses its meaning. To make sure that is the case, we have to add a total
derivative ±jh̄φ̇ to the Lagrangian, but it works only for one of the poles, not
both. Therefore, we use jh̄(−1 + cos θ) in the northern hemisphere, and use
jh̄(1+cos θ) in the southern hemisphere. We connect the two at the equator
by adding a total derivative to the Lagrangian ±2jh̄φ̇, which corresponds to
a gauge transformation by e±i2jφ on wave functions.

We start with the southern hemisphere (rejoice, Aussies!) There, we start
with the action

S = jh̄
∫

(1 + cos θ)φ̇dt. (26)

Therefore, the canonical commutation relation is

[φ, jh̄(1 + cos θ)] = ih̄. (27)

In the coordinate representation where φ is diagonal, we have

jh̄(1 + cos θ) =
h̄

i

∂

∂φ
. (28)

Because Jz = jh̄ cos θ, we find

Jz =
h̄

i

∂

∂φ
− jh̄. (29)

Clearly the eigenstates of Jz with the eigenvalue mh̄ are given by

ψm(φ) =
1√
2π
ei(j+m)φ. (30)
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Note that this form of ψm(φ) does satisfy the periodic boundary condition
ψm(φ+2π) = ψm(φ) even for half-integer j because of the combination j+m.
The raising and lowering operators are then given by

J+ =

√
h̄

i

∂

∂φ
eiφ

√
2jh̄− h̄

i

∂

∂φ
, (31)

J− =

√
2jh̄− h̄

i

∂

∂φ
e−iφ

√
h̄

i

∂

∂φ
. (32)

It is straightforward to verify that

J+
1√
2π
ei(j+m)φ =

√
j(j + 1)−m(m+ 1)

1√
2π
ei(j+m+1)φ, (33)

J−
1√
2π
ei(j+m)φ =

√
j(j + 1)−m(m− 1)

1√
2π
ei(j+m−1)φ. (34)

In the northern hemisphere, we start with the action

S = jh̄
∫

(−1 + cos θ)φ̇dt. (35)

Therefore, the canonical commutation relation is

[φ, jh̄(−1 + cos θ)] = ih̄. (36)

In the coordinate representation where φ is diagonal, we have

jh̄(−1 + cos θ) =
h̄

i

∂

∂φ
. (37)

Because Jz = jh̄ cos θ, we find

Jz =
h̄

i

∂

∂φ
+ jh̄. (38)

Clearly the eigenstates of Jz with the eigenvalue mh̄ are given by

ψm(φ) =
1√
2π
ei(−j+m)φ. (39)

This wave function is related to that in the southern hemispher by a “gauge
transformation” e−2ijφ, as expected from the difference in the total derivative
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term ∆L = −2jh̄φ̇. The raising and lowering operators are then

J+ =

√
2jh̄+

h̄

i

∂

∂φ
eiφ

√
− h̄
i

∂

∂φ
, (40)

J− =

√
− h̄
i

∂

∂φ
e−iφ

√
2jh̄+

h̄

i

∂

∂φ
. (41)

It is straightforward to verify that

J+
1√
2π
ei(j+m)φ =

√
j(j + 1)−m(m+ 1)

1√
2π
ei(j+m+1)φ, (42)

J−
1√
2π
ei(j+m)φ =

√
j(j + 1)−m(m− 1)

1√
2π
ei(j+m−1)φ. (43)

3.4 Working Backwards

It may be instructive to see how the action we used can be justified back
from the representation of spin we know.

Let us first study the state

|z〉 ≡ ezJ−/h̄|j, j〉. (44)

By Taylor expanding the operator, we find

|z〉 =
∞∑

n=0

zn

n!h̄n (J−)n|j, j〉 =
2j∑

n=0

zn

n!

√√√√ (2j)!n!

(2j − n)!
|j, j − n〉

=
j∑

m=−j

zj−m

√√√√ (2j)!

(j +m)!(j −m)!
|j,m〉. (45)

They have inner products

〈z1|z2〉 = (1 + z̄1z2)
2j. (46)

The important property of this state is that the spin is oriented along a
particular direction. This can be seen first by studying the angular momen-
tum operators. Using Hausdorff formula

eABe−A =
∞∑

n=0

1

n!
[A, [A, · · · [A︸ ︷︷ ︸

n

, B] · · ·]] (47)
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we obtain

e−zJ/h̄Jze
zJ−/h̄ = Jz + [Jz,

z

h̄
J−] = Jz − zJ−, (48)

e−zJ/h̄J−e
zJ−/h̄ = J0, (49)

e−zJ/h̄J+e
zJ−/h̄ = J+ + [J+,

z

h̄
J−] +

1

2!
[[J+,

z

h̄
J−],

z

h̄
J−] = J+ + 2zJz − z2J−.

(50)

This allows us to find

(Jz + zJ−)|z〉 = jh̄|z〉, (51)

(J+ − zJz)|z〉 = jh̄z|z〉. (52)

Then

[(Jz + zJ−) + z̄(J+ − zJz)]|z〉 = jh̄(1 + zz̄)|z〉. (53)

Writing z = reiφ and recalling J± = (Jx ± iJy), we obtain[
2r

1 + r2
(Jx cosφ+ Jy sinφ) +

1− r2

1 + r2
Jz

]
|z〉 = jh̄|z〉. (54)

We can further rewrite it with

sin θ =
2r

1 + r2
, cos θ =

1− r2

1 + r2
(55)

as

[Jx sin θ cosφ+ Jy sin θ sinφ+ Jz cos θ] |z〉 = jh̄|z〉. (56)

In other words, the state |z〉 is the eigenstate of ~J · ~n = Jx sin θ cosφ +
Jy sin θ sinφ+ Jz cos θ along the orientation defined by the polar angle θ and
the azimuth φ.† As z sweeps the complex plane, the spin can orient at any
directions.

We can decompose unity with these states

1 =
2j + 1

π

∫ d2z

(1 + zz̄)2j+2
|z〉〈z|. (57)

†z is the projective coordinate of a sphere, i.e., the projection of sphere on a plane
attached at the north pole using rays shone from the south pole.
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This can be shown as follows. Writing z = reiφ, d2z ≡ rdrdφ,

2j + 1

π

∫ d2z

(1 + zz̄)2j+2
|z〉〈z|

=
2j + 1

π

∫ d2z

(1 + zz̄)2j+2

∑
m,m′

zj−m

√√√√ (2j)!

(j +m)!(j −m)!
|j,m〉〈j,m′|

√√√√ (2j)!

(j +m′)!(j −m′)!
z̄j−m′

=
2j + 1

π

∫ rdrdφ

(1 + r2)2j+2

∑
m,m′

(r)2j−m−m′
ei(m′−m)φ

√√√√ (2j)!

(j +m)!(j −m)!

√√√√ (2j)!

(j +m′)!(j −m′)!
|j,m〉〈j,m′|

=
2j + 1

π

∫ ∞

0

2πrdr

(1 + r2)2j+2

∑
m

(r2)j−m (2j)!

(j +m)!(j −m)!
|j,m〉〈j,m|

= (2j + 1)
∑
m

(2j)!

(j +m)!(j −m)!
|j,m〉〈j,m|

∫ ∞

0

dr2

(1 + r2)2j+2
(r2)j−m

= (2j + 1)
∑
m

(2j)!

(j +m)!(j −m)!
|j,m〉〈j,m|

∫ ∞

0

tj−mdt

(1 + t)2j+2

=
∑
m

(2j + 1)!

(j +m)!(j −m)!
B(j −m+ 1, j +m+ 1)|j,m〉〈j,m|

=
∑
m

|j,m〉〈j,m|

= 1. (58)

The repeated insertion of the decomposition of unity leads to a path
integral. We ignore the overall factor ((2j + 1)/π)N :

〈zf |zi〉 =
∏
k

∫ d2zi

(1 + z̄izi)2j+2
〈zf |zN〉〈zN |zN−1〉 · · · 〈z2|z1〉〈z1|zi〉

=
∏
k

∫ d2zi

(1 + z̄izi)2j+2
(1 + z̄fzN)2j(1 + z̄NzN−1)

2j · · · (1 + z̄1zi)
2j

=
∏
k

∫ d2zi

(1 + z̄izi)2
exp 2j (ln(1 + z̄fzN)− ln(1 + z̄NzN)

+ ln(1 + z̄NzN−1)− ln(1 + z̄N−1zN−1) · · · − ln(1 + z̄1z1) + ln(1 + z̄1zi)) .

(59)
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The limit of infinite time slices N →∞ makes the exponent

2j
∫
dt

˙̄zz

1 + z̄z
. (60)

This must be iS/h̄ of the classical action.
Now we rewrite this path integral in terms of θ and φ. Using the definition

of θ from cos θ = 1−r2

1+r2 ,

d cos θ = d
1− r2

1 + r2
= − 4rdr

(1 + r2)2
. (61)

Therefore,
d2z

(1 + z̄z)2
=

rdrdφ

(1 + r2)2
=

1

4
d cos θdφ. (62)

Therefore the path integral is just a successive integration over the surface
of the sphere. It is also useful to know r = tan θ

2
. The action is

i

h̄
S = 2j

∫
dt

˙̄zz

1 + z̄z

= 2j
∫
dt cos2 θ

2

(
θ̇

2 cos2 θ
2

e−iφ − i tan
θ

2
φ̇e−iφ

)
tan

θ

2
eiφ

= 2j
∫
dt

(
1

2
tan

θ

2
θ̇ − i sin2 θ

2
φ̇

)
. (63)

The first term is a total derivative d
dt

ln cos θ
2

and can be dropped. The
second term can be simplified using sin2 θ

2
= (1 − cos θ)/2 and dropping a

total derivative,

i

h̄
S = ij

∫
dt cos θφ̇. (64)

This is precisely the action we had used in previous sections.

3.5 Geometric Quantization

This section is for mathematically inclined. Quantization of systems with
compact phase space can be done consistently with a formalism called “ge-
ometric quantization.” In this formalism, the action is an integral of a one-
form χ = pidqi on the phase space, which gives the symplectic form of the
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phase space as ω = dχ. The method is particularly clear when the phase
space admits a Kähler structure. Then the sympletic form is nothing but
the Kähler form. You then construct a holomorphic line bundle on the
phase space whose first Chern class is given by the Kähler form. This of
course requires that the Kähler form belongs to the second cohomology of
the symplectic manifold with integer coefficient, i.e., the phase space vol-
ume is quantized. Obtain all holomorphic sections of the line bundle. They
form the finite-dimensional Hilbert space. In our case, S2 ' CP 1, which
admits a Kähler structure. Using a complex coordinate z, the Kähler poten-
tial is K = 2j ln(1 + z̄z). The sympletic two-form is nothing but the Käher
two-form ω = i∂∂̄K = i2jdz∧dz̄

(1+z̄z)2
. The gauge connection is obtained from the

requirement that ω = ∂̄A with Ā = 0, and hence

A = −2j
iz̄dz

1 + z̄z
. (65)

Between two patches, the coordinate transformation z → −1/z gives

A = 2j
idz

1 + z̄z

1

z
, (66)

clearly singular at z = 0. Therefore a transition function of z−2j is needed,
to obtain

A = 2j
idz

1 + z̄z

1

z
− iz2j∂z−2j = −2j

iz̄dz

1 + z̄z
. (67)

A holomorphic section regular at z = 0 are given by positive powers in z,

1, z, z2, · · · , zN , · · · (68)

but at the infinity, we multiply them with the transition function and find

z−2j, z−2j+1, z−2j+2, · · · , z−2j+N , · · · (69)

They are regular at z = ∞ only for N ≤ 2j. Therefore, we obtain 2j + 1
dimensional vector space of holomorphic sections,

1, z, z2, · · · , z2j. (70)

The operators are given by

Jz = z∂ − j, J+ = −z2∂ + 2jz, J− = ∂. (71)
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The state |j,m〉 is represented by zj+m.
The inner product of wave functions is defined obviously by an integral

with the volume factor d2z
(1+z̄z)2

. However, to ensure that the integrand is

invariant under the coordinate transformation z → −1/z together with the
transition function z2j, we need another factor 1

(1+z̄z)2j , so that

ψ∗(z̄)ψ(z)

(1 + z̄z)2j
→ ψ∗(−1/z̄)ψ(−1/z)

(1 + 1/(z̄z))2j
=
z̄2jψ∗(−1/z̄)z2jψ(−1/z)

(1 + z̄z)2j
. (72)

Because∫ d2z

(1 + z̄z)2

z̄kzk′

(1 + z̄z)2j
=
∫ rdrdφ

(1 + r2)2j+2
rk+k′ei(k′−k)φ = π

k!(2j − k)!

(2j + 1)!
δk,k′ .

(73)
Therefore the correctly normalized states are given by

ψm(z) =

√
2j + 1

π

√√√√ (2j)!

k!(2j − k)!
zk =

√
2j + 1

π

√√√√ (2j)!

(j +m)!(j −m)!
zj+m.

(74)
Relationship to the backward construction in the previous section is obvious.

4 Other Constructions of Spin

There had been many attempts to simplify our life dealing with spins (or in
general, angular momenta). Here are some.

Sakurai introduces Schwinger’s method to deal with angular momentum.
Is it basically that you have two harmonic oscillators

H = h̄ω(a†1a1 + a†2a2 + 1) (75)

and assigning spin up to a†1, spin down to a†2, i.e., spin 1/2 to this doublet.
Using spin 1/2 many many times can give you any spin you’d like. This way,
you can construct Hilbert space of angular momentum from simple harmonic
oscillators.

If you already know what j you are interested in, you can live with only
one harmonic oscillator. You start with the standard vacuum, a|0〉 = 0
identified as |j,−j〉 = |0〉. Now you define

Jz = h̄(a†a− j), (76)
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J+ = h̄a†
√

2j − a†a, (77)

J− = h̄
√

2j − a†a a. (78)

It looks odd, but it works. Checking commutation relations [Jz, J±] = ±h̄J±
is easy. The tricky one is

[J+, J−] = h̄2a†
√

2j − a†a
√

2j − a†a a− h̄2
√

2j − a†a aa†
√

2j − a†a

= h̄2a†(2j − a†a)a− h̄2
√

2j − a†a(a†a+ 1)
√

2j − a†a

= h̄2(2j − a†a+ 1)a†a− h̄2(2j − a†a)(a†a+ 1)

= 2h̄2(a†a− j) = 2h̄Jz. (79)

Because the commutation relations come out correctly, it is guaranteed that
their matrix representations are also correct, using |j,m〉 = |j + m〉 in the

harmonic oscillator languate. The factor
√

2j − a†a basically truncates the

Hilbert space at a†a = 2j by a brute force. But this formalism does not come
out from a Lagrangian or Hamiltonian formulation; it is also odd that there
is no way to flip Jz, m↔ −m.
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