
HW #2 Solutions (221B)

1) See mathematica program

2) Yukawa potential in the Born approximation

a)

By straight forward integration in the Born approximation (see e.g. lecture
notes 2),
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b)

As discussed in the lecture notes, we require that the difference between the
true wavefunction ψ and the free plane wave φ be small where the potential
is large. We compute in the Born approximation at the origin (relabling
~x′ → ~x):
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The integral is much easier to do if you integrate the r variable first.
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If you integrate θ first, you can then do the r integral in Mathematica and
use the relation arctan z = log 1+iz

log 1−iz from Gradshtein and Ryzhik to turn the
result into the single log as above. The condition for the validity of the Born
approximation is
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c)

Given the above condition, we also have

m2V 2
0

k2
~

4
|log (1− 2ika)|2 � 1.

Though this weakens the meaning of�, the new condition will be sufficient
for our purposes. Write the new condition as
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In this language,

σ = 4πa2 γ s(k),
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If we can show v(k) ≥ s(k), then the validity condition γv(k) � 1 implies
σ � 4πa2 whenever the Born approximation is valid. I plotted the two func-
tions v(k) and s(k) in mathematica and displayed the result in “yukawa.nb”
at the end of this solution. The plot shows that v(k) is in fact an upper
bound for s(k), and this holds independent of a (though I only plotted one
case, a = 1.
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We can arrive at this upper bound analytically as follows. First find
the magnitude of log (1− 2ika) by writing z = 1 − 2ika = reiθ, taking the
logarithm of reiθ (principal branch), and then taking the magnitude of the
resulting complex number:
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Since v(k) and s(k) are strictly real and positive for real k, the condition
v(k) ≥ s(k) is equivalent to v(k)/s(k) ≥ 1, or
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Now, limk→0 f(k) = 1, the arctan2(−2ka) contributing the 4k2a2 needed to
balance the similar factor in the denominator. So initially f(0) = 1 ≥ 1. By
taking derivatives with respect to k (e.g. on Mathematica), you can confirm
that f ′(k) ≥ 0 for k real and positive, so that f is strictly increasing. Thus
f(k) = v(k)

s(k) ≥ 1.
If you do this problem by making approximations for various values of

k, your results will look slightly different from those in the lecture notes.
Prof. Murayama’s definition of V = V0

e−r/a

r in the problem means V0 has
dimension energy ∗ length as opposed to dimensions of energy as for the V0

in the lecture notes. To recover the results from the lecture notes redefine
V0 in this problem V0 → V0 a.
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In[20]:= s@k_D :=
4
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1 + 4 k2  a2

In[19]:= v@k_D :=
Abs@Log@1 - 2 I a kDD2
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k2  a2

Plot@8v@kD �. a ® 1, s@kD �. a ® 1<, 8k, 0, 10<, PlotRange ® 80, 4<,
PlotStyle ® 8RGBColor@1, 0, 0D, RGBColor@0, 0, 1D<D
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