HW #6 Solutions (221B)

Since the Hamiltonian is spin independent, we can choose any spin state for
the n = 2 electon, and our results will be the same. I take spin up. Likewise,
the Hamiltonian is rotationally symmetric so we can choose any value for
the n = 2 m value. I will leave m a free variable.

a)
Since we are not using coordinates &1, To2, ¥3 to label our electrons, we need

another scheme, e.g. subscripts on the ket vectors:
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and likewise for ¥ (1522p).

b)

We presuppose when we write down a wavefunction out of products of single-
particle wavefunctions that Hy splits into a sum of single-particle Hamilto-
nians. For the record, the energy in atomic units (ref. solutions to HW #5)
is
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the last equality holding for Lithium (Z = 3).

c)

By antisymmetry of the wavefunction,
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the first equality following by antisymmetry, the second by relabeling.)
Therefore only cross terms with identical third-particle states are nonzero,



and since everything is normalized, we can drop third-particle states in our
notation.
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Since 712 = 797 there are exactly two of every term.

d)
The 2nd, 6th, 10th, and 12th terms vanish by orthogonality of spin wave-
functions. The 3rd, 7th, 9th, and 11th terms are equal. Thus
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and likewise for p states.

e)

In part (f), we will have to distinguish between a variational parameter A
and the charge Z in the Hamiltonian which isn’t varied, so I will use A in the
wavefunctions in this calculation. I use atomic units. We need to calculate
the 3 terms in part (d) for both 2s and 2p cases. I'll do one example and
quote results for the others.

Using the expression in the lecture notes

where the argument 1 in the spherical harmonics means (61, ¢1),
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We want to evaluate this by using the orthogonality relations for spherical
harmonics, but they don’t hold if there is other angular dependence (e.g. a
third spherical harmonic) in the integral. However, note that Y, = \/%—W is
actually independent of angle, so we can pull it outside the integral. Then

we can evaluate the remaining 6, ¢; angular dependence,
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We then use the delta functions to cancel the sum and fix I = 0,m = 0

elsewhere. That is good because then Y},,(2) — Ypo(2) = \/%_Tr, and then

there are only two remaining 65, ¢o spherical harmonics:
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We are left with
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Because of the 1/r~ we need to split the integral into two parts,
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Mathematica does these integrals nicely, giving %8 TG

procedures, I find

Following analagous
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Setting A — Z, and then using Z = 3,
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This contribution raises the energy, as one would expect for electron repul-
2

sion, and is a significant offset to the zeroth-order result Fy = —% = —%.
When we have a 2p electron instead,
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In total,

(E(] + AE)15225 ~ —7.057
(EO + AE)lSQZp ~ —6843

Confirming our intuition, the total Ey + AFE has smaller magnitude for the
2p than the 2s case: The 2p electron is in a more ‘circular’ orbit, so it sees
less of the nuclear charge (i.e. it is screened more by the inner electrons).

f)

In our trial wavefunctions we replace Z with A as above. The zeroth-order
single-particle contributions to the energy with this wavefunction are
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as you can easily compute. Thus
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the last being the AFE contribution. Minimizing with respect to A (and

taking Z=3) gives
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We find A < Z, properly reflecting the screening effect of the electrons.
As with Helium, the variational energy counters the over-correction from
perturbation theory. Repeating for the 15%2p case,

A~ 2514,
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