
221B Lecture Notes
Many-Body Problems I

1 Quantum Statistics of Identical Particles

If two particles are identical, their exchange must not change physical quan-
tities. Therefore, a wave function ψ(~x1, ~x2, · · · , ~xN) of N identical particles
should not change the probability density |ψ|2 under exchanging two parti-
cles, and hence we need

ψ(~x1, · · · , ~xj, · · · , ~xi, · · · , ~xN) = eiθψ(~x1, · · · , ~xi, · · · , ~xj, · · · , ~xN) (1)

where eiθ is a phase factor. This equation should hold for any pairs i, j.
What phase can it be? The requirement is that when you interchange

a pair of particles twice, it is the same as not interchaning them. Namely
(eiθ)2 = 1, and hence eiθ = ±1. The sign +1 is for bosons (particles that obey
Bose–Einstein statistics) and −1 for fermions (those that obey Fermi-Dirac
statistics).

The above argument is actually true only for three spatial dimensions
and above. In two dimensions, one can define the orientation in the way
you exchange two particles, clockwise or anti-clockwise. Then two clockwise
exchanges do not have to give the original wave function. But one clockwise
and one anti-clockwise exchange should. (Note that in three dimensions,
one can rotate the sheet on which you exchange particles either clockwise or
anti-clockwise by 180◦ to make clockwise and anti-clockwise exchanges the
same.) Therefore the phase eiθ can be anything, and the particles that obey
quantum statistics of this sort are called anyons. They appear in the context
of Fractional Quantum Hall Effect. In one dimension, two particles cannot go
around each other when exchanged. Recall that this is why a delta function
potential causes scattering in one-dimension but not above. Therefore, the
exchange of particles necessarily involves the scattering phase shift at the
same time, and one cannot separate the issue of statistics and interaction.
For instance, fermions with self-interactions that produce a phase shift of π
are equivalent to bosons with no self-interactions. One can also interpolate
between fermions and bosons in terms of phase shifts. Such situations do
arise in one-dimensional systems such as polymers and spin chains.

When I studied quantum mechanics, I once had a false impression that
all you need to implement statistics is to divide Hilbert space into symmetric
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and anti-symmetric parts. Well, it isn’t completely wrong, but the point
is to find totally symmetric and totally anti-symmetric wave functions. To
see this, let us start with two-body wave functions. Considering two states
|a〉 and |b〉, there are two possible states for two particles to be in these
two states: |ab〉 and |ba〉. The first entry refers to the first particle and the
second to the second particle. Between these two states, we form symmetric
and anti-symmetric combinations:

|ab〉+ |ba〉, |ab〉 − |ba〉. (2)

The first one qualifies as a wave function for two identical bosons, while
the seonc one for two identical fermions. In addition to these, the states
|aa〉 and |bb〉 are already symmetric and are allowed for bosons but not for
fermions. Therefore, every possible state you can imagine are still used in
multi-body wave functions. The situation changes once you go to three parti-
cles. When three particles occupy three distinct states |a〉, |b〉 and |c〉, there
are six possible states |abc〉, |acb〉, |bca〉, |bac〉, |cab〉, |cba〉. Among them,
only combinations

|abc〉+ |acb〉+ |bca〉+ |bac〉+ |cab〉+ |cba〉 (3)

and
|abc〉 − |acb〉+ |bca〉 − |bac〉+ |cab〉 − |cba〉 (4)

are allowed for bosons and fermions, respectively, but other four combinations
are not. In general, forN particles fillingN distinct states, there areN ! states
to start with, but there is only one totally symmetric state and one totally
anti-symmetric state, and the rest of N !−2 states are thrown out. Therefore
quantum statistics reduces the size of the Hilbert space quite dramatically.

2 Spin-Statistics Theorem

There is a theorem in relativistic quantum field theory called spin-statistica
theorem, proven by Pauli. It says that any particle with integer spin, such as
photon (spin 1), should obey Bose-Einstein statistics, while any particle with
half-odd spin, such as electron (spin 1/2), should obey Fermi-Dirac statistics.
I cannot get into the discussion why in this course. The assumptions in this
theorem are: (1) Lorentz invariance, (2) causality, and (3) unitarity (i.e.,
positivity of the norms).
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3 Pauli’s Exclusion Principle

Pauli set up an ad hoc rule how to fill atomic states with electrons. He
claimed that you can put two electrons per state. We now know that we
can put actually only one electron per state, but there are two possible spin
orientations for a given spatial state which effectively reproduces Pauli’s rule.

We understand this rule now as a consequence of the anti-symmetrization
of the wave function. Because a general fermionic wave function is |ab · · ·〉 −
|ba · · ·〉 where · · · part is also anti-symmetrized, setting a = b makes the wave
function vanish identically. This is how Pauli’s exclusion principle arises in
modern quantum mechanics. It is quite remarkable that the definition of
“identical particles” immediately lead to only two possibilities (in 3 dimen-
sions) and one of them lead to Pauli’s exclusion principle almost trivially.

Therefore, the fact that the electrons obey Pauli’s exclusion principle in
order to understand atomic spectra tells us that the electron is a fermion.

4 Proton statistics

How do we know that protons obey Fermi-Dirac statistics? We of course
know that because of the spin-statistic theorem, but this theorem needed to
be established experimentally anyway. We need to know that the proton is
a fermion independent of its spin and the spin-statistics theorem.

For that purpose, we consider molecular band spectrum. A molecular
band spectrum is what appears in the emission lines from a gas of molecules
mostly from vibrational spectra (infrared), but the “lines” appear to be a
“band”, i.e. a thick line. Looking more closely, the thick line actually consists
of many many fine lines, which come from rotatinal deexcitations.

Generally, a diatomic molecule has a rotational spectrum due to the rigid
body Hamiltonian

H =
~L2

2I
=
h̄2l(l + 1)

2I
. (5)

Here it is assumed that the molecule has a dumb-bell shape and can rotate
in two possible modes.

In the case of hydrogen molecules H2, two atoms are bosons because
they consist of two fermions (one electron and one proton). Therefore the
total wave function must be symmetric under the exchange of two hydrogen
atoms. A part of the wave function comes from the spin degrees of freedom
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of two protons. Depending on S = 0 or S = 1 for two proton spins, the spin
part of the wave function is either anti-symmetric or symmetric. Everything
else being the same between two hydrogen atoms, the anti-symmetry of the
S = 0 spin wave function must be compensated by the rotational wave
function. Using the relative coordinate ~r = ~x1 − ~x2 between two protons,
the interchange of two protons will flip the sign of ~r → −~r. The rotational
wave function is nothing but spherical harmonics Y m

l (~r), which satisfies the
property Y m

l (−~r) = (−1)l(~r). Therefore the interchange of two protons
would result in a sign factor (−1)l from the rotational wave function. In
order to compensate the unwanted minus sign for S = 0 case, we need to
take l odd. On ther other hand, for S = 1 case, we need to take l even to
keep the wave function symmetric.

Transitions among rotational levels take place only between the same S,
because the nuclear magneton is too small to cause spin flips in the tran-
sitions. Therefore rotational spectra appear from transitions among even l
states or odd l states, but not among odd and even l’s. Because the tran-
sitions are most frequent between two nearest states, the S = 0 case causes
spectra for l = 3 to l = 1, l = 5 to l = 3, and so on, and hence

Eγ =
h̄2

2I
((2n+1)(2n+2)−(2n−1)2n) =

h̄2

2I
(8n+2) =

h̄2

2I
(10, 18, 26, 34, · · ·).

(6)
On the other hand, the S = 1 case causes spectra

Eγ =
h̄2

2I
((2n+2)(2n+3)−2n(2n+1)) =

h̄2

2I
(8n+6) =

h̄2

2I
(6, 14, 22, 30, · · ·).

(7)
Having two series of spectra so far does not prove the statistics. But the point
is that the first spectrum is for S = 0, and hence only one spin orientation,
but the second one is for S = 1, and hence for three possible spin orienta-
tions. In other words, the lines for the second set of spectrum must be three
times stronger than the first set. If protons followed Bose-Einstein statistics
instead, the wave function must changes it sign under the interchange of two
atoms, and hence the S = 0 combination should give the second set of spec-
tra while the S = 1 the first set, and the relative strengh between two sets
reverses.

This method applies in general to any same-nucleus diatomic molecules.
In fact, the statistics of nitrogen nuclei 14N was determined to be Bose-
Einstein from this type of measurements, and causes a great puzzle. In those
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days, people thought that the nuclei consist of protons and electrons, and
hence the nitrogen nucleus was believed to be 14p+7e−, and hence a fermion.
This discrepancy (statistics puzzle), together with a continuous spectrum of
nuclear β-decay, let Pauli to speculate the existence of neutrinos.

5 Slater Determinant

Given single particle states, how do we construct a totally anti-symmetric
wave function for fermions? Slater answered this question when he was at-
tacking the problem of multi-electron atoms. Calling single particle levels
1, 2, · · · , N which N electrons fill, the totally anti-symmetric wave function
can be written in terms of a Slater determinant,

ψ(~x1, ~x2, · · · , ~xN) =
1√
N !

det


ψ1(~x1) ψ1(~x2) · · · ψ1(~xN)
ψ2(~x1) ψ2(~x2) · · · ψ2(~xN)

...
...

. . .
...

ψN(~x1) ψN(~x2) · · · ψN(~xN)

 . (8)

Simply because of the properties of a determinant, this automatically gives
a totally anti-symmetric wave function.

Here are some examples. When N = 2,

ψ(~x1, ~x2) =
1√
2!

det

(
ψ1(~x1) ψ1(~x2)
ψ2(~x1) ψ2(~x2)

)
=

1√
2
[ψ1(~x1)ψ2(~x2)−ψ1(~x2)ψ2(~x1)].

(9)
For N = 3,

ψ(~x1, ~x2, ~x3) =
1√
3!

det

 ψ1(~x1) ψ1(~x2) ψ1(~x3)
ψ2(~x1) ψ2(~x2) ψ2(~x3)
ψ3(~x1) ψ3(~x2) ψ3(~x3)


=

1√
6
[ψ1(~x1)ψ2(~x2)ψ3(~x3) + ψ1(~x2)ψ2(~x3)ψ3(~x1) + ψ1(~x3)ψ2(~x1)ψ3(~x2)

−ψ1(~x2)ψ2(~x1)ψ3(~x3)− ψ1(~x3)ψ2(~x2)ψ3(~x1)− ψ1(~x1)ψ2(~x3)ψ3(~x2)].(10)

One important word of caution is that multi-particle wave functions are
in general not given by symmeterized or anti-symmetrized combination of
products of single-particle wave functions.
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6 Path Integral Formulation

In path integral formulation of quantum mechanics, we calculate the transi-
tion amplitudes

〈~xf , tf |~xi, ti〉 =
∫
D~x(t)e

i
h̄

∫ tf
ti

dtL(t)
. (11)

It is important that this transition amplitude contains information about
time evolution of an arbitrary state, because

ψ(~x, t) = 〈~x, t|ψ〉 =
∫
d~xi〈~x, t|~xi, ti〉〈~xi, ti|ψ〉 =

∫
d~xi〈~x, t|~xi, ti〉ψ(~xi, ti).

(12)
The generalization to the N -particle case is just that the Lagrangian

contains many particles L = L(~xi(t), ~̇xi(t)) and

〈~x1f , · · · , ~xNf , tf |~x1i, · · · , ~xNi, ti〉 =
∫
D~x1(t) · · · D~xN(t)e

i
h̄

∫ tf
ti

dtL(t)
. (13)

Here, the particle 1 at the initial position ~x1i moves to the final position
~x1f , the particle 2 at the initial position ~x2i to ~x2f , etc, and you sum over
all possible paths. Again, the time-evolution is given by integrating over all
initial positions for N particles together with the transition amplitude.

When the particles are identical, however, we need to introduce proper
(anti-)symmetry of the state. Let us discuss fermions. (The case for bosons
can be obtained easily by dropping all minus signs.) Because of the anti-
symmetry of the wave function,

Ψ(~x1, · · · , ~xi, · · · , ~xj, · · · , ~xN) = −Ψ(~x1, · · · , ~xj, · · · , ~xi, · · · , ~xN) (14)

it is convenient to introduce the anti-symmetrized position bra

〈[~x1, · · · , ~xN ]| = 1√
N !

∑
σ

(−1)σ〈~xσ(1), · · · , ~xσ(N)|. (15)

Here, σ is all possible permutations. The factor (−1)σ is +1 (−1) for even
(odd) permutations. For example, the three-body case is

〈[~x1, ~x2, ~x3]| =
1√
3!

(〈~x1, ~x2, ~x3|+ 〈~x2, ~x3, ~x1|+ 〈~x3, ~x1, ~x2|

−〈~x3, ~x2, ~x1| − 〈~x2, ~x1, ~x3| − 〈~x1, ~x3, ~x2|) . (16)
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Any state given by the form

Ψ(~x1, · · · , ~xN) = 〈[~x1, · · · , ~xN ]|Ψ〉 (17)

is automatically anti-symmetric under the interchange of two coordinates. In
particular, if the state |Ψ〉 is given in terms of a product of single-particle
states |Ψ〉 = |ψ1〉|ψ2〉 · · · |ψN〉, Eq. (17) gives Slater determinant of ψi(~xj).

Therefore it is useful to consider path integral representation of the tran-
sition amplitudes

〈[~x1f , · · · , ~xNf ], tf |[~x1i, · · · , ~xNi], ti〉. (18)

On the other hand, the Lagrangian for identical particles must be invariant
under the exchange of particles,

L(~x1, ẋ1, · · · , ~xi, ~̇xi, · · · , ~xj, ~̇xj, · · · , ~xN , ~̇xN)

= L(~x1, ẋ1, · · · , ~xj, ~̇xj, · · · , ~xi, ~̇xi, · · · , ~xN , ~̇xN) (19)

This immediately leads to the identity

〈~x1f , · · · , ~xjf , · · · ~xkf , · · · , ~xNf , tf |~x1i, · · · , ~xji, · · · ~xki, · · · , ~xNi, ti〉
= 〈~x1f , · · · , ~xkf , · · · ~xjf , · · · , ~xNf , tf |~x1i, · · · , ~xki, · · · ~xji, · · · , ~xNi, ti〉(20)

because both all possible path configurations and the associated weight eiS/h̄

are the same for two amplitudes. Using the definition Eq. (15), we find

〈[~x1f , · · · , ~xNf ], tf |[~x1i, · · · , ~xNi], ti〉

=
1

N !

∑
σ

∑
σ′
〈~xσ(1)f , · · · , ~xσ(N)f , tf |~xσ′(1)i, · · · , ~xσ′(N)i, ti〉

=
∑
σ

〈~xσ(1)f , · · · , ~xσ(N)f , tf |~x1i, · · · , ~xNi, ti〉. (21)

In other words, the path integral sums over all possible paths allowing the
positions at the final time slice are interchanged in all possible ways starting
from the positions at the initial time slice. For instance, again for the three-
body case,

〈[~x1f , ~x2f , ~x3f ], tf |[~x1i, ~x2i, ~x3i], ti〉
= 〈~x1f , ~x2f , ~x3f , tf |~x1i, ~x2i, ~x3i, ti〉+ 〈~x2f , ~x3f , ~x1f , tf |~x1i, ~x2i, ~x3i, ti〉

+〈~x3f , ~x1f , ~x2f , tf |~x1i, ~x2i, ~x3i, ti〉 − 〈~x3f , ~x2f , ~x1f , tf |~x1i, ~x2i, ~x3i, ti〉
−〈~x2f , ~x1f , ~x3f , tf |~x1i, ~x2i, ~x3i, ti〉 − 〈~x1f , ~x3f , ~x2f , tf |~x1i, ~x2i, ~x3i, ti〉.

(22)
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+
x1i

x2i

x3i

x1f x2f x3f

+
x1i

x2i

x3i

x1f x2f x3f

+
x1i

x2i

x3i
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− x1i
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− x1i
x2i

x3i

x1f x2f x3f

− x1i
x2i

x3i

x1f x2f x3f

Figure 1: The path integral for three identical fermions.

The graphical representation in Fig. (1) makes it clear that the relative
signs are attached according to the number of times pairs are interchanged.

When the spatial dimension is two, the interchange of particles makes
the paths intertwined. (In higher dimensions such as three, there is always a
way to make them disentangle.) In particular, there is a sense of orientation
in the way two paths intertwine. This is what makes anyons possible.
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x1i
x2i

x1f
x2f

+eiθ x1i
x2i

x1f
x2f

+e2iθ x1i
x2i

x1f
x2f

+ · · ·

+e−iθ x1i
x2i

x1f
x2f

+e−2iθ x1i
x2i

x1f
x2f

+ · · ·

Figure 2: The path integral for two anyons.
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