221B Lecture Notes

Notes on Spherical Bessel Functions

1 Definitions

We would like to solve the free Schrodinger equation

_ [i;ﬂ_ l(l;;l)] R(r) = ’527’; R(r). (1)

R(r) is the radial wave function (Z) = R(r)Y,"(0,¢). By factoring out
h?/2m and defining p = kr, we find the equation

pdp’ " T2

ng AR 1] R(p) = 0. 2)

The solutions to this equation are spherical Bessel functions. Due to some
reason, I don’t see the integral representations I use below in books on math-
emtical formulae, but I believe they are right.

The behavior at the origin can be studied by power expansion. Assuming
R o p™, and collecting terms of the lowest power in p, we get

nn+1)—1(l+1)=0. (3)
There are two solutions,
n=1[l or —1—1. (4)

The first solution gives a positive power, and hence a regular solution at the
origin, while the second a negative power, and hence a singular solution at
the origin.

It is easy to check that the following integral representations solve the
above equation Eq. (2)):

hl(l) (,0) _ (p??)l /—:loo eipt<1 N tz)ldt, (5>

and

hl(2) (p) _ (p/Q)l /ioo 6ipt<1 . t2)ldt. (6)
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By acting the derivatives in Eq. , one finds

[1 & Ul+1) ] )
+ 1| by (p)
pdp?” p?
(p/2)t rie ou | LL+T1)  2(0+ 1)t 5, U(I+1)
:_Pl! /il(1—t)[ e + 1| dt
l 100 .
_(p??) ;Ll jt[ezpt(l _t2)l+1} dt. (7)

Therefore only boundary values contribute, which vanish both at ¢ = 1 and
t =400 for p = kr > 0. The same holds for hl(Q)(p).
One can also easily see that h 1)*( ) = hl(z) (p*) by taking the complex
conjugate of the expression Eq. (5) and changing the variable from ¢ to —t.
The integral representation Eq. can be expanded in powers of 1/p.

For instance, for hl(l), we change the variable from ¢ to x by t = 1 4 iz, and
find

N poo . !
hl(l)(p) - (p/ ) ‘/O 6%p(1+2$)xl(_2i)l (1 o ;) idr

[! i
= z(p{?) Z C’k/ e P <—2$Z_>ka:lda:

e L (=i k(l+k)! 1

= —i—) P (8)

p iz 2PENI—-FK) p

Similarly, we find

Therefore both h(1’2) are singular at p = 0 with power p~t~!

The combination j;(p) = (h, m 4 h )/2 is regular at p = 0. This can be
seen easily as follows. Because hl( ) is an integral from t = —1 to ioco, while
hl(l) from t = +1 to ioco, the differencd between the two corresponds to an
integral from t = —1 to t = 00 and coming back to t = +1. Because the

integrand does not have a pole, this contour can be deformed to a straight
integral from ¢t = —1 to +1. Therefore,

o) = 3 O [ ey (10)
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In this expression, p — 0 can be taken without any problems in the int

and hence j; o« p', i.e., regular. The other linear combination n; =
hl@)) /2i is of course singular at p = 0. Note that

W (p) = Gilp) + imu(p)

is analogous to
e’ = cosp + isinp.

It is useful to see some examples for low [.

. sinp . _ sinp cos p . 3—p? : 3
Jo= ", =" T J2 = p33 s;n — ;2 COSp,
o cos o cos sin _ — 3 o
ny = — 2L, n1——7p—7p, Ny = —=4£ COSP—[TQSIHPa
1 . oip 1 . i\ 1 . (3—p2 AN
A — e p ) — L _i)eir Y = 3=p~ _ 31 gip,
0 P 1 p P 2 03 P
2) ce=ip (2) (1 i\ _—i (2) . (3—p2 3\ —i
R — e h”’ =il +4)e ™ hy' =1 4 2L e,
0 p 1 p? + P 2 p3 + 02

2 Asymptotic Behavior

Eqgs. @) give the asymptotic behaviors of hl(l) for p — oo:
pi eilp—im/2)

MY~ i (—i) = —i
: p p

By taking linear combinations, we also find

, sin(p — I /2)
Jo~ )
p
—r/2
0~ _cos(p—lIm/ )
p

3 Plane Wave Expansion

The non-trivial looking formula we used in the class

oo

e =3 (21 + 1)i' jy(kr) P(cos )

=0

(h

7

l

(13)

(14)

(15)

(16)

(17)

can be obtained quite easily from the integral representation Eq. . The
point is that one can keep integrating it in parts. By integrating ! factor
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and differentiating (1 — #2)! factor, the boundary terms at t = 41 always
vanish up to [-th time because of the (1 — ¢?)! factor. Therefore,

- 1(p/2) /1 L ipt d\' 211
== Yl ——] (1 —t%)dt. 18
= Ly \Ta) U (18)
Note that the definition of the Legendre polynomials is
11d
P(t)= =——(t* = 1)\ 1

Using this definition, the spherical Bessel function can be written as

. 11 ! ipt

Then we use the fact that the Legendre polynomials form a complete set of
orthogonal polynomials in the interval ¢ € [—1, 1]. Noting the normalization

1 2
[ PO Pyt = 5=—b0m, (21)

the orthonormal basis is P,(t)1/(2n + 1)/2, and hence

> 2R P =0t =) 2)

By multipyling Eq. by P,(t')(2l + 1)/2 and summing over n,

;r Bt)n(p) = 5?/ e Y Bt A(tydt = 5-e™. (23)
n=1 7 —1 ne0 i

By setting p = kr and t’ = cos ), we prove Eq. .
If the wave vector is pointing at other directions than the positive z-
axis, the formula Eq. (17) needs to be generalized. Noting Y;°(,¢) =

\/ (21 4+ 1) /47w Py(cos ), we find

= 0 l
7 = dm Y iilkr) DD Y7 (O, 6" (O, 02) 24
=0

m=—1



4 Delta-Function Normalization

An important consequence of the identity Eq. is the innerproduct of two
spherical Bessel functions. We start with

[ dze e FE— ampa( - F). (25)

Using Eq. in the Lh.s of this equation, we find

/d—’ ik —zk X
/

= Y Y (4n) / QY™ () Y™ () Yy (Qa) Vi (Q )i () g (')

Lm U';m’

= Z (47) /drr2jl(kr)jl(/€/7”)ylm*(Q;)Yim(ﬂgf)- (26)

I,m

On the other hand, the r.h.s. of Eq. is

@m)3(k — k) = (27) 6(k: K — Q)

k2
= (27)° kzsmed(k E)o# —0)(p—¢'). (27
Comparing Eq. and and noting
DY Q) = 0(Q; — Qp), (28)
l,m
we find
/ drr2j,(kr)ji(K'r) = ﬁé(k i), (29)
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