
221B Lecture Notes
Notes on Spherical Bessel Functions

1 Definitions

We would like to solve the free Schrödinger equation

− h̄2

2m

[
1

r

d2

dr2
r − l(l + 1)

r2

]
R(r) =

h̄2k2

2m
R(r). (1)

R(r) is the radial wave function ψ(~x) = R(r)Y m
l (θ, φ). By factoring out

h̄2/2m and defining ρ = kr, we find the equation[
1

ρ

d2

dρ2
ρ− l(l + 1)

ρ2
+ 1

]
R(ρ) = 0. (2)

The solutions to this equation are spherical Bessel functions. Due to some
reason, I don’t see the integral representations I use below in books on math-
emtical formulae, but I believe they are right.

The behavior at the origin can be studied by power expansion. Assuming
R ∝ ρn, and collecting terms of the lowest power in ρ, we get

n(n+ 1)− l(l + 1) = 0. (3)

There are two solutions,

n = l or − l − 1. (4)

The first solution gives a positive power, and hence a regular solution at the
origin, while the second a negative power, and hence a singular solution at
the origin.

It is easy to check that the following integral representations solve the
above equation Eq. (2):

h
(1)
l (ρ) = −(ρ/2)l

l!

∫ i∞

+1
eiρt(1− t2)ldt, (5)

and

h
(2)
l (ρ) =

(ρ/2)l

l!

∫ i∞

−1
eiρt(1− t2)ldt. (6)

1



By acting the derivatives in Eq. (2), one finds[
1

ρ

d2

dρ2
ρ− l(l + 1)

ρ2
+ 1

]
h

(1)
l (ρ)

= −(ρ/2)l

l!

∫ i∞

±1
(1− t2)l

[
l(l + 1)

ρ2
+

2(l + 1)it

ρ
− t2 − l(l + 1)

ρ2
+ 1

]
dt

= −(ρ/2)l

l!

1

iρ

∫ i∞

±1

d

dt

[
eiρt(1− t2)l+1

]
dt. (7)

Therefore only boundary values contribute, which vanish both at t = 1 and
t = i∞ for ρ = kr > 0. The same holds for h

(2)
l (ρ).

One can also easily see that h
(1)∗
l (ρ) = h

(2)
l (ρ∗) by taking the complex

conjugate of the expression Eq. (5) and changing the variable from t to −t.
The integral representation Eq. (5) can be expanded in powers of 1/ρ.

For instance, for h
(1)
l , we change the variable from t to x by t = 1 + ix, and

find

h
(1)
l (ρ) = −(ρ/2)l

l!

∫ ∞

0
eiρ(1+ix)xl(−2i)l

(
1− x

2i

)l

idx

= −i(ρ/2)l

l!
eiρ(−2i)l

l∑
k=0

lCk

∫ ∞

0
e−xρ

(
− x

2i

)k

xldx

= −ie
iρ

ρ

l∑
k=0

(−i)l−k(l + k)!

2kk!(l − k)!
1

ρk
. (8)

Similarly, we find

h
(2)
l (ρ) = i

e−iρ

ρ

l∑
k=0

il−k(l + k)!

2kk!(l − k)!
1

ρk
. (9)

Therefore both h
(1,2)
l are singular at ρ = 0 with power ρ−l−1.

The combination jl(ρ) = (h
(1)
l + h

(2)
l )/2 is regular at ρ = 0. This can be

seen easily as follows. Because h
(2)
l is an integral from t = −1 to i∞, while

h
(1)
l from t = +1 to i∞, the differencd between the two corresponds to an

integral from t = −1 to t = i∞ and coming back to t = +1. Because the
integrand does not have a pole, this contour can be deformed to a straight
integral from t = −1 to +1. Therefore,

jl(ρ) =
1

2

(ρ/2)l

l!

∫ 1

−1
eiρt(1− t2)ldt. (10)
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In this expression, ρ→ 0 can be taken without any problems in the integral
and hence jl ∝ ρl, i.e., regular. The other linear combination nl = (h

(1)
l −

h
(2)
l )/2i is of course singular at ρ = 0. Note that

h
(1)
l (ρ) = jl(ρ) + i nl(ρ) (11)

is analogous to
eiρ = cos ρ+ i sin ρ. (12)

It is useful to see some examples for low l.

j0 = sin ρ
ρ
, j1 = sin ρ

ρ2 − cos ρ
ρ
, j2 = 3−ρ2

ρ3 sin ρ− 3
ρ2 cos ρ,

n0 = − cos ρ
ρ
, n1 = − cos ρ

ρ2 − sin ρ
ρ
, n2 = −3−ρ2

ρ3 cos ρ− 3
ρ2 sin ρ,

h
(1)
0 = −i eiρ

ρ
, h

(1)
1 = −i

(
1
ρ2 − i

ρ

)
eiρ h

(1)
2 = −i

(
3−ρ2

ρ3 − 3i
ρ2

)
eiρ.

h
(2)
0 = i e

−iρ

ρ
, h

(2)
1 = i

(
1
ρ2 + i

ρ

)
e−iρ h

(2)
2 = i

(
3−ρ2

ρ3 + 3i
ρ2

)
e−iρ.

(13)

2 Asymptotic Behavior

Eqs. (8,9) give the asymptotic behaviors of h
(1)
l for ρ→∞:

h
(1)
l ∼ −ie

iρ

ρ
(−i)l = −ie

i(ρ−lπ/2)

ρ
. (14)

By taking linear combinations, we also find

jl ∼ sin(ρ− lπ/2)

ρ
, (15)

nl ∼ −cos(ρ− lπ/2)

ρ
. (16)

3 Plane Wave Expansion

The non-trivial looking formula we used in the class

eikz =
∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) (17)

can be obtained quite easily from the integral representation Eq. (10). The
point is that one can keep integrating it in parts. By integrating eiρt factor
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and differentiating (1 − t2)l factor, the boundary terms at t = ±1 always
vanish up to l-th time because of the (1− t2)l factor. Therefore,

jl =
1

2

(ρ/2)l

l!

∫ 1

−1

1

(iρ)l
eiρt

(
− d

dt

)l

(1− t2)ldt. (18)

Note that the definition of the Legendre polynomials is

Pl(t) =
1

2l

1

l!

dl

dtl
(t2 − 1)l. (19)

Using this definition, the spherical Bessel function can be written as

jl =
1

2

1

il

∫ 1

−1
eiρtPl(t)dt. (20)

Then we use the fact that the Legendre polynomials form a complete set of
orthogonal polynomials in the interval t ∈ [−1, 1]. Noting the normalization∫ 1

−1
Pn(t)Pm(t)dt =

2

2n+ 1
δn,m, (21)

the orthonormal basis is Pn(t)
√

(2n+ 1)/2, and hence

∞∑
n=0

2n+ 1

2
Pn(t)Pn(t′) = δ(t− t′). (22)

By multipyling Eq. (20) by Pl(t
′)(2l + 1)/2 and summing over n,

∞∑
n=1

2l + 1

2
Pl(t

′)jn(ρ) =
1

2

1

in

∫ 1

−1
eiρt

∞∑
n=0

Pl(t
′)Pl(t)dt =

1

2

1

in
eiρt′ . (23)

By setting ρ = kr and t′ = cos θ, we prove Eq. (17).
If the wave vector is pointing at other directions than the positive z-

axis, the formula Eq. (17) needs to be generalized. Noting Y 0
l (θ, φ) =√

(2l + 1)/4π Pl(cos θ), we find

ei~k·~x = 4π
∞∑
l=0

iljl(kr)
l∑

m=−l

Y m∗
l (θ~k, φ~k)Y

m
l (θ~x, φ~x) (24)
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4 Delta-Function Normalization

An important consequence of the identity Eq. (24) is the innerproduct of two
spherical Bessel functions. We start with∫

d~xei~k·~xe−i~k′·~x = (2π)3δ(~k − ~k′). (25)

Using Eq. (24) in the l.h.s of this equation, we find∫
d~xei~k·~xe−i~k′·~x

=
∑
l,m

∑
l′,m′

(4π)2
∫
dΩ~xdrr

2Y m∗
l (Ω~k)Y

m
l (Ω~x)Y

m′∗
l′ (Ω~x)Y

m′

l′ (Ω~k′)jl(kr)jl′(k
′r)

=
∑
l,m

(4π)2
∫
drr2jl(kr)jl(k

′r)Y m∗
l (Ω~k)Y

m
l (Ω~k′). (26)

On the other hand, the r.h.s. of Eq. (25) is

(2π)3δ(~k − ~k′) = (2π)3 1

k2
δ(k − k′)δ(Ω~k − Ω~k′)

= (2π)3 1

k2 sin θ
δ(k − k′)δ(θ − θ′)δ(φ− φ′). (27)

Comparing Eq. (26) and (27) and noting∑
l,m

Y m∗
l (Ω~k)Y

m
l (Ω~k′) = δ(Ω~k − Ω~k′), (28)

we find ∫ ∞

0
drr2jl(kr)jl(k

′r) =
π

2k2
δ(k − k′). (29)

5


	Definitions
	Asymptotic Behavior
	Plane Wave Expansion
	Delta-Function Normalization

