
Final Solutions

1. To figure out electronic configurations of multi-electron atoms we have to take
inter-electron Coulomb repulsion into account. For relatively small atoms, we
can ignore spin-orbit interactions (in comparison to Coulomb repulsion), and
build electronic configurations using LS coupling. Namely, we add individual
l to form a total L, and individual s to form total S. We then refer to the
configuration as 2S+1L, such as 1P , 3D, etc. With the central potential alone
electronic configurations with the orbitals are degenerate. However, inter-
electron Coulomb repulsion removes the degeneracy. The empirical “Hund’s
rule ” says that configuration with larger S are lower, and among those with
the same S, states with larger L are lower. Calculate the difference in ener-
gies for three different configurations for the case of carbon 1s22s22p2, and
show that Hund’s rule is correct. For this purpose, you can ignore the com-
pletely filled 1s and 2s orbitals, and discuss only the remaining two electrons
in the 2p orbital (of course anti-symmetrized) and the Coulomb repulsion
between them

A good place to begin is to recognize which electronic configurations are allowed
by anti-symmetry of the wavefunction. We are adding two spin 1/2 particles which
can give us an antisymmetric S = 0 or a symmetric S = 1. Adding the two l = 1
states can give either L = 0 or L = 2 which are symmetric1 or an antisymmetric
L = 1, requiring the total wave function be antisymmetric we are restricted to

1S 3P 1D

in the notation described above. Hund’s rule then predicts

E3P < E1D < E1S.

The configurations |L,mL〉 × |spin〉 above may be written in terms of the indi-
vidual angular momentum eigenstates |l1,m1〉 × |l2,m2〉 ≡ |m1,m2〉 as follows:

• For the 1D states:

|2,+2〉 = |+ 1,+1〉

|2,+1〉 =
1√
2

(|+ 1, 0〉+ |0,+1〉)

|2, 0〉 =
1√
6

(|+ 1,−1〉+ | − 1,+1〉+ 2|0, 0〉)

|2,−1〉 =
1√
2

(| − 1, 0〉+ |0,−1〉)

|2,−2〉 = | − 1,−1〉 (1)

1 Note that we are referring to symmetry under exchange of particles. The general rule is
that the highest L is symmetric, and then alternate.



times an antisymmetric spin state.

• For the 3P states

|1,+1〉 =
1√
2

(|+ 1, 0〉 − |0,+1〉)

|1, 0〉 =
1√
2

(|+ 1,−1〉 − | − 1,+1〉)

|2,−1〉 =
1√
2

(| − 1, 0〉 − |0,−1〉) (2)

times a symmetric spin state.

• For the 1S state

|0, 0〉 =
1√
3

(|+ 1,−1〉+ | − 1,+1〉 − |0, 0〉) (3)

times an antisymmetric spin state.

To demonstrate Hund’s rule we will ignore the electrons in the closed shell as
instructed and only look at the two outer electrons in the 2p orbital moving in
some central potential W (r) that will include the screening of the nuclear charge
by inner orbitals. Just as we did with the helium atom we will calculate the energy
treating the Coulomb repulsion as a perturbation,

H = H0 + V

H0 =
∑

i=1,2

(
p2

i

2m
+W (ri)

)

V =
e2

r12
.

Ignoring the Coulomb repulsion, all of the configurations above are degenerate2.
To first order in perturbation theory, the shift in energy is the usual 〈ψ|V |ψ〉,
where |ψ〉 is any of the allowed configurations above. The next question is: when
calculating shift in energy for 1D, for example, which of the configurations in Eq.
(1) should we take? Since 1

r12
is rotationally invariant (L̂ commutes with H) we

are guaranteed to get the same result for any mL, once we chose L. It is of course
most convenient to choose |2,+2〉 in the 1D case because it consists of only one

2 This is actually an assumption that W (r) falls like r−1 where the 2p orbital is peaked.
Namely, we assume the 1s and 2s are closer to the nucleus than 2p, and the screening is already
‘exhausted’ at the typical distance of the 2p orbital. This assumption is needed to prevent an
L-depending energy such as in question 1 part b) of the midterm. I hope you agree it is a
reasonable assumption.



term, but we will have to deal with more than one when calculating for the other
configurations. In the notebook attached we do the calculation for all possible
values of mL to illustrate this degeneracy.

As an example lets look at |L = 1,mL = +1〉. Plugging the appropriate
configuration in Eq. (2) we get

∆E3p =

=
1

2
[〈+1, 0|V |+ 1, 0〉 − 〈+1, 0|V |0,+1〉 − 〈0,+1|V |+ 1, 0〉+ 〈0,+1|V |0,+1〉]

= 〈+1, 0|V |+ 1, 0〉 − 〈+1, 0|V |0,+1〉. (4)

So in general we want to calculate matrix elements of the form 〈m1,m2| e2

r12
|m3,m4〉.

We will use the standard expansion of the coulomb repulsion

1

r12

= 4π
∞∑
l=0

l∑
m=−l

1

2l + 1

rl
<

rl+1
>

Y ∗lm(Ω2)Ylm(Ω1). (5)

Since Eq. (5) has a spherical harmonic for each electron and the bra and ket will
have one more each, we will have to perform a ‘triple-Ylm’ integral for each electron
(we’ve done this before but in previous cases one of them was Y00). Luckily, such a
triple-Y integral is given in terms of Clebsch-Gordan (CG) coefficients (Eq. 3.7.73
in the first Sakurai)∫

dΩY ∗lm(Ω)Y l1m1(Ω)Yl2m2(Ω)

=

√√√√(2l1 + 1)(2l2 + 1)

4π(2l + 1)
〈l1, 0; l2, 0|l, 0〉〈l1,m1; l2,m2|l,m〉 (6)

where 〈l1,m1; l2,m2|l,m〉 is a CG coefficient that is non-zero only when l1 + l2 ≥
l ≥ |l1 − l2| and m = m1 +m2. Note that for l1 = l2 = 1 the only values l takes in
Eq. (6) are l = 0 or 2 because of the first CG coefficient (this coefficient vanishes
for l=1 because of parity). We will assume the radial wave function that solves
W (r) is some R(r) such that

ψ(~r1, ~r2) = R(r1)R(r2)× [angular part]× [spin part] (7)

Putting it all together, changing the names of some indices, gives a relatively
simple expression for the matrix element (defined as me[ ] in the attached Math-
ematica notebook)

〈m1,m2|
e2

r12

|m3,m4〉 =

∑
l=0,2

Fl

l∑
m=−l

〈1, 0; 1, 0|1, 0〉2〈1,m1; l,m|1,m3〉〈1,m2; l,m|1,m4〉 (8)



with

Fl = e2
∫ ∞
0

r2
1dr1

∫ ∞
0

r2
2dr2R

∗(r1)R
∗(r2)

rl
<

rl+1
>

R(r1)R(r2) (9)

If you haven’t done so before, now is the time to take a look at the Mathematica
notebook. Writing the energy shift in terms of matrix elements such as in Eq. (4)
and working out the CG coefficient carnival shows us the following

∆E3P = F0 −
1

5
F2

∆E1D = F0 +
1

25
F2

∆E1S = F0 +
2

5
F2. (10)

Note that we got the same results for all mL in a certain multiplet. Just by
looking at the definition of Fl we see that it is positive. Eq. (10) is therefore
a confirmation of Hund’s rule. Note that we have not yet performed the radial
integral. This shows that Hund’s rule works regardless of the amount of screening
by inner orbitals (so long as the screening satisfies the assumption we made in the
footnote above). The next step is to take an explicit form for W(r)

W (r) =
e2Zeff

r
,

where Zeff will be expected to be somewhere between 2 and 6 (2 for maximal
screening and 6 for no screening. I’d guess closer to 2). This form for W (r) is
framiliar— the radial part of the wavefunction will be the usual hydrogen atom
R2p(r) with Z → Zeff . Doing the radial integrals gives the results shown in the
notebook. The energy differences are of order 1 eV, much smaller than the carbon
binding energy which of order a few hundred eV.

2. Consider the decay of the 2p state of hydrogen atom to the 1s state. Calculate
the amplitude of the decay for m = +1 state using plane waves for photons,
and explain the θ dependence of the amplitude for each helicity ±1 of the
final-state photon in terms of the angular momentum conservation. Show
that the rate is the same as the decay rate of the m = 0 state.

The only differences from the calculation in the lecture note “Quantum Field
Theory III (Radiation Field)” are: the matrix elements 〈1s| ~D|2p,m = ±1〉 and
the polarization vectors ~ελ(~q)

∗. (The complex conjugation is very important for
helicity eigenstates.) The matrix elements are

〈1s| ~D|2p,m = 1〉 = e
∫ ∞
0

r2drdΩ
1

a3
2e−r/aY 0∗

0

√
6

12

r

a
e−r/2aY 1

1 ~x. (11)



Because Y 1
1 = −

√
38π cos θeiφ, only x and y components of the dipole operator

survive integration over φ. The result of the integration is

〈1s| ~D|2p,m = 1〉 = −e128

243
a(1, i, 0). (12)

On the other hand, the polarization vectors for helicity±1 states are (Eqs. (16,17,18)
in the lecture note):

ε±(~p) =
1√
2
(± cos θ cosφ− i sinφ,± cos θ sinφ+ i cosφ,∓ sin θ). (13)

Therefore the transition matrix element Eq. (56) is

〈f |V |i〉 =
i

h̄
|~q|
√

2πh̄c2

L3

1
√
ωq

~ε∗λ(~q) · 〈1s| ~D|2p,m = 1〉

=
i

h̄
|~q|
√

2πh̄c2

L3

1
√
ωq

(−e)128

243
a

(1, i, 0) · 1√
2
(± cos θ cosφ+ i sinφ,± cos θ sinφ− i cosφ,∓ sin θ)

=
i

h̄
|~q|
√

2πh̄c2

L3

1
√
ωq

(−e) 1√
2

128

243
a(1± cos θ)eiφ. (14)

The θ dependence has a simple interpretation in terms of angular momentum
conservation. The initial state has the angular momentum Jz = +1. When a
positive helicity photon is emitted along the negative z-axis, it carries away the
angular momentum Jz = −1, and hence the final state must have Jz = +2.
However, our final state is 1s and hence Jz = 0. Such a transition must be
forbidden. Indeed, (1 + cos θ) factor does that precisely. Only the other hand,
if the positive helicity photon is emitted along the positive z-axis, the angular
momentum conservation is satisfied. Since unit angular momentum should give
an amplitude linear in cos θ (in general higher j gives j-th order polynomials),
(1+ cos θ) is the only possible θ dependence. The argument for a negative helicity
photon is similar.

The rate is calculated in the same way as in Eq. (60),

Wi =
∫ dΩq

(2πh̄)3
|~q|2 (2π)2|~q|

h̄

∑
±

∣∣∣∣∣(−e) 1√
2

128

243
a(1± cos θ)eiφ

∣∣∣∣∣
2

=
∫ dΩq

2πh̄4 |~q|
3
∑
±

(
e

1√
2

128

243
a

)2

(1± 2 cos θ + cos2 θ)

=
∫ dΩq

2πh̄4 |~q|
3

(
e

1√
2

128

243
a

)2

2(1 + cos2 θ)



=
8

3

(
128

243

)2

e2
q3a2

h̄4

=
2

3

(
256

243

)2

e2
q3a2

h̄4 . (15)

Note that you need to sum over helicities of the photon to obtain the total decay
rate of the 2p state. This result agrees completely with the decay orate of the
|2p,m = 0〉 state calculated in the lecture note, confirming the rotational invariance
of the result.

3. How can the 2s state decay to the 1s state? You do not need to calculate the
rate, but sketch how the calculation can be done, and also give an estimate
of the rate.

In multipole expansion, we saw that a photon carries angular momentum of
at least one. On the other hand, the initial and final state here both have zero
angular momentum. Therefore, the 2s state cannot decay to the 1s state by
emitting a single photon. When you were told that Lyman series of hydrogen
spectrum shows transitions between states with principal angular momentum n
and 1, you were cheated; n = 1 case shows only transitions between 2p and 1s,
but not 2s! Then how does the 2s state decay to the ground state? It has to emit
two photons. Note that an emission of two photons at the same time does not give
you a discrete spectrum. Only the sum of two photon energies is constrained. The
dominant contribution is the emission of two photons both in the E1 multipole
(electric dipoles) where the angular momenta of both photons cancel and hence
they are in the J = 0 configuration. Angular momentum consideration suggests
the combination |k10, k10〉+ 2|k11, k1− 1〉.

Then the next question is how can two photons be emitted. There are two
possibilities. One is to use the term

V =
(
e

c

)2
~A(~x)2 (16)

in the Hamiltonian. However, using the expression for the electric dipole photon
Eq. (86) in the lecture note, the matrix is 〈1s|2s〉 which vanishes identically. Then
we have to go to higher order in kr for the electric dipole mode function ~uE

k10.
Another possibility is to use the operator we’ve been using

V = −e
c
~p · ~A(~x) (17)

twice. The transition element is then

〈1s+two photons|V 1

E2s −H0

V |2s〉 =
∑

i

〈1s+two photons|V |i〉 1

E2s − Ei

〈i|V |2s〉.

(18)



The perturbation Hamiltonian V on the left creates the intermediate states, |2p+
photon〉 (or any other |np〉 state), while that on the right creates another photon
making transition to the 1s state. You then have to sum over all intermediate
states.

Order of magnitude of the process can be easily be estimated by neglecting all
numerical factors but by keeping dependences on the physical constants. We have
seen that dipole transition matrix elements 〈f |V |i〉 go as ∼ ea0E

1/2
γ L−3/2. Then

the transition element Eq. (18) goes as

∑
i

〈1s+ two photons|V |i〉 1

E2s − Ei

〈i|V |2s〉 ∼ (ea0E
1/2
γ L−3/2)2 1

e2/a0

= a3
0EγL

−3.

(19)
Doing a similar analysis for the contribution from the term Eq. (16) shows that it is
suppressed by at least α2 because of the higher order in the multipole expansion.
The rate goes as square of this: a6

0E
2
γL

−6. The phase space integral summing

over two final state photons goes as (L3q3/h̄3)2 ∼ L6E6
γ/(h̄c)

6. Here I made an
approximation that two photon energies are comparable. This is indeed the case
because the phase space E3

1E
3
2 , subject to the constraint that E1 + E2 is fixed, is

maximized when E1 ∼ E2. Together with the delta function in energy and 1/h̄ in
Fermi’s golden rule, the estimate of the decay rate is a6

0E
7
γ/h̄

7c6 ' α8mc2/h̄. On
the other hand, the dipole transition rate for 2p→ 1s is α5mc2/h̄ up to numerical
factors. Therefore, the decay rate of 2s→ 1s is roughly α3 ' 4× 10−7 smaller.

A detailed calculation shows that the decay rate is very small: 8.229 sec−1,
even another order of magnitude smaller than the above rough estimate due to
numerical factors. This is smaller than the dipole transition from 2p to 1s by eight
orders of magnitude! The 2s state is hence said to be metastable.

You may think that the 2s state decays into 2p state first, which is lower than
the 2s state because of the Lamb shift, and then decays into 1s state, rather than
going through quantum intermediate states as in Eq. (18) or emitting two photons
directly from the operator Eq. (16). Recalling that the decay rate due to electric
dipole transition is proportional to the energy of the photon to the cube power,
and knowing that the decay rate we calculated for 2p → 1s was 6.27 × 108sec−1,
we can estimate the order of magnitude of the decay rate of 2s to 2p due to the
Lamb shift. The level splitting is about 1 GHz in frequency. The energy of the
photon then is hν ' 4.1× 10−6 eV. On the other hand, the energy of the photon
in the 2p→ 1s decay is 13.6× (1−1/4) eV. Therefore the 2s→ 2p decay gives the
energy of the photon 4.1× 10−7 time smaller than 2p→ 1s, and hence the decay
rate is suppressed by (4.1× 10−7)3 = 6.7× 10−20. This is indeed very small! What
it means is that the decay of 2s state going through the 2p state is possible, but
this decay is limited by the slowness of 2s → 2p transition and the two photon
transition discussed above is far more important.

Finally, once you consider the spin of the electron (not required in this prob-



lem), the decay 2s1/2 → 1s1/2 allows even parity j = 1 photon: an M1 transition.
However, the M1 transition causes only the spin flip and does not change the spa-
tial wave function at the leading order in kr. Hence the amplitude picks up higher
order in the Taylor expansion in the spherical Bessel function j1(kr), which is
(kr)3 compared to kr of the leading term. Recall that the M1 is already one order
higher in kr compared to the E1. Therefore there is an overall (kr)3 suppression
in the amplitude, and hence (kr)6 in the rate compared to the E1 transition rate.
Because k ∼ α2mc/h̄ for the typical photon wave vector from the atomic transi-
tions and r ∼ a0 = h̄/(αmc), kr ∼ α. This leads to a factor of α6 suppression in
the rate relative to the E1 case, and hence negligible compared to the two-photon
process.

In this decay, therefore, two photons are emitted promptly, giving vanishing
total angular momentum. This is the ideal system for testing Einstein–Podolsky–
Rosen paradox and Bell’s inequality and had been used for that purpose.

Table 1: Comparison of Theoretical and Experimental Total Decay Rates of the
2s1/2 State (in s−1). Taken from G.W.F. Drake, in “The Spectrum of Atomic
Hydrogen Advances,” edited by G. W. Series, World Scientific, 1988.

Ion Theory Experiment
He+ 526.61 525± 5
O7+ 2.1552× 106 (2.21± 0.22)× 106

F8+ 4.3699× 106 (4.22± 0.28)× 106

S15+ 1.3964× 108 (1.37± 0.13)× 108

Ar17+ 2.8590× 108 (2.868± 0.029)× 108

I could not find experimental data on the 2s lifetime for hydrogen, except the
statement that it is very difficult to measure because of its too small decay rate
(or too long lifetime). Instead, I found comparison between theory and data for
hydrogen-like atoms. Following the analysis above with Z > 1, the two E1 photon
emission process scales as Z6, while one M1 photon emission as Z10. At some
point, the M1 emission catches up. Here is a table that compares theory and
experiment. For Ar, the data is sufficiently accurate to be sensitive to the small
M1 contribution of 0.0908× 108 s−1.


