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Using the given mode expansion of the vector potential, we check the Coulomb gauge condition. Acting the divergence on
the vector potential simply pulls out i ;7 / #i for the term with annihilation operators or —i ;7 / #i for the term with creation
operators. Therefore, all we need to show is that ;7 . Zi (;7) = 0. Here, I emphasized that the polarization vector depends on
the momentum (its direction).

The momentum vector is ;7 = p(sin @ cos ¢, sin Osin @, cos @), while the two (linear) polarization vectors are given by
Zl (;7) = (cosf cos ¢, cosfsin¢@p, —sinb)

Zz (;7) = (—sin¢, cos ¢, 0)

It is straightforward to check

;Zl(;) = p(sin 6 cos ¢ cos 6 cos ¢ + sin O sin ¢ cos @ sin ¢ — cos @ sinh) = 0,

;7 . 22(2) = p(—sinfcos ¢ sin @ + sin O sin ¢ cos @) = 0.

. . . . . . . . . . . i
The polarization vectors for cirular polarization (helicity eigenstates) are linear combinations of €;, and hence they are
orthogonal to the momentum vector as well.

Therefore, the given mode expansion satisfies the Coulomb gauge condition.
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(b)

In the Coulomb gauge, the scalar potential vanishes in the absence of electric charges, and the electric field is simply

E = 1 A. On the other hand, we can use integration by parts and the Coulomb gauge condition to simplify the term
fde —fdexA VxA fd}A-AA
Therefore,
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Similarly for the second term,
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operators. The total Hamiltonian is

IBIES)
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(€0(2)- x(p) ar(p)ar () + €2(p) - €x(p)ar” (p) ar ()
Using the orthonormahty of the pola.rlzatlon vectors, € A(Za) . A(Za) = Oax, it further simplifies to

H =255 25 @)l () + a (P)a(p)
—Z hw al )al(2)+%)

We flnd that the Hamiltonian is nothing but an infinite collection of harmonic oscillators of definite momentum and helicity.
(c)

The only piece of Hamitonian we need is H =% w, a,’t (;7) a, (;7) for the mode we consider, because other terms vanish when
acted on the vacuum |0) once we decide to neglect the zero-point piece. We suppress the subscript + and the momentum
g p p PP p
argument to simplify the expressions. The Lh.s. of the equation is
ih L | feicrity = i L e P2 gf M a |
_e—|f| /chpe—lcpt/h efeirihd |0

— fhwa e—cht/h |f€_“pt/h
The r.h.s. is
H |fe—icpt/h - hwa% a | fe—icpt/h

— hwa% fe—icpt/h |fe—icpt/h
Both sides agree.

(d)

Given the state | f, ) = | fe"i°P!") we calculate the expectation value of the vector potential,

<f, t|;§(;, t)|f, > Feicpin /anfZa Z - + (2.(p)as(p) e/ + gi*(z)ai+(;)ei;.}/h | feierin)
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This is nothing but the plane wave solution to the Maxwell equation in the Coulomb gauge (%2 % - A)A =0. Itisa
coherent electromagnetic wave, and indeed the laser is described by this state.

For example, let us take ;7 = (0, 0, p), namely 6 =0, ¢ = 0. Then, Z+ = % (1, i, 0). We also take f real. Then the expecta-

tion value is

(f el As(x )| £ ) = N 2255 J— V2 feos(p(ct—2)/h)
(s A (x )] £ 1) = 2255 N V2 fsin(p(ct—2)/)
(f. t]A(x0)] fo1)=0

The electric field is simply its time derivative (devided by ¢). It indeed is circularly polarized light of frequency ¢ p/# and
wave vector p /7.

In other words, laser is the Bose—Einstein condensate of photons.



