HW #9 (221B), due Apr 8, 4pm

- 1. Lookup levels of ²¹⁰Pb, ²¹⁰Bi, and ²¹⁰Po, and explain the low-lying excitations using the shell model.
- 2. Lookup levels of ¹⁷O, and ¹⁷F, and explain the low-lying excitations using the shell model.
- 3. Consider 2s and 2p wave functions of the hydrogen atom. Answer the following questions. Try to use Mathematica for visualization as much as possible.
 - (a) Show that one can take linear combinations of states $|2p, m = \pm 1\rangle$ to obtain orbitals elongated along x or y axis (or equivalently, $\phi = 0$ and $\phi = \pi/2$ directions).
 - (b) Show that one can further combine $|2s\rangle$ state to obtain orbitals elongated along $\phi = 0$, $\phi = 2\pi/3$, and $\phi = 4\pi/3$ directions. They are sp^2 mixed orbitals used for carbon atoms in ethylene, etc.
 - (c) Similarly, show that one can combine all three 2p states and 2p state to obtain orbitals elongated along the axes of a tetrahedron. They are sp^3 mixed orbitals used in methane etc.
- 4. Consider the Lagrangian of a harmonic oscillator

$$L = \frac{1}{2}m\dot{x}^2 - \frac{1}{2}m\omega^2 x^2.$$
 (1)

- (a) Rewrite the Lagrangian using $p = \partial L / \partial \dot{x}$ and eliminate \dot{x} .
- (b) Further rewrite it using $a = \sqrt{\frac{m\omega}{2\hbar}} x + i \frac{1}{\sqrt{2m\hbar\omega}} p$ and a^{\dagger} .
- (c) Regarding a as the canonical coordinate, and comparing the Lagrangian to the general form $p\dot{q} H(p,q)$, observe that the conjugate momentum is $i\hbar a^{\dagger}$ and derive the canonical commutation relation for $[a, a^{\dagger}]$ as well as the Hamiltonian in quantum mechanics.
- (d) Instead of using the usual canonical commutation relation, use an *anti*commutation relation $\{a, a^{\dagger}\} = 1$, $\{a, a\} = \{a^{\dagger}, a^{\dagger}\} = 0$. Show that the Hilbert space consists of only two states, $|0\rangle$ and $|1\rangle = a^{\dagger}|0\rangle$. What are their energy eigenvalues?