
221B Lecture Notes
Many-Body Problems II

Atomic Physics

1 Single-Electron atoms

When there is only one electron going around a nucleus, it is a hydrogen-
like atom: H, He+, Li++, Be3+, etc. The energy levels of the electron is
well-known, determined only by the principal quantum number n

En = −1

2

Z2e2

aB

, (1)

where a = h̄2/me2 is the Bohr radius. Some of the wave functions which we
will use later on are

ψ1s(~x) = a−3/22e−r/aY 0
0 (θ, φ) (2)

ψ2s(~x) = a−3/2 1√
2

(
1− 1

2

r

a

)
e−r/2aY 0

0 (θ, φ) (3)

ψ2p(~x) = a−3/2

√
6

12

r

a
e−r/2aY m

1 (θ, φ). (4)

Here, a = aB/Z.
As we discussed in 221A, the fine splittings arise due to the relativistic

effects, namely the relativistic correction

Hrc = − (~p2)2

8m3c2
, (5)

the spin-orbit coupling

HLS = +g
1

4m2
ec

2

1

r

dVc

dr
(~L · ~S), (6)

and the Darwin term

HDarwin =
h̄2

8m2
ec

2
∆Vc. (7)

The energy levels are given by nlj, where j = l ± 1
2
. There remains an

accidental degeneracy among states with the same n and j, such as 2s1/2 and
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2p1/2, 3p3/2 and 3d3/2, etc. This degeneracy will be removed by the Lamb
shift, which will be discussed towards the end of the course.

In addition, there is the hyperfine interaction between the electron and
the nucleus which we will not discuss in this notes.

2 Two-Electron atoms

Multi-electron atoms are quite complicated. In addition to the central poten-
tial due to the nuclear charge, there are repulsive Coulomb potentials among
electrons. The Hamiltonian is

H =
∑

i

(
~p2

i

2m
− Ze2

ri

)
+
∑
i<j

e2

rij

. (8)

Here, ri = |~xi| and rij = |~xi−~xj|. Because of the Coulomb interaction among
electrons, one cannot solve the system exactly anymore (at least analytically).
Various techniques are devised to attack this problem, which we will discuss
below. For concreteness, let us consider Helium atom, or in general a nucleus
of charge Ze and two electrons.

2.1 Perturbation Theory

The simplest approach (at least conceptually) is to apply perturbation theory
to study the atomic structure, starting from one-particle wave functions and
their Slater determinants.

It is obvious from the beginning that the use of perturbation theory is
conceptually flawed. We treat the Coulomb attraction between each electron
and the nucleus exactly, while treating the Coulomb repulsion between two
electrons as a perturbation to the system. It is formally justified, if Z is
very large with only two electrons; then the Coulomb attraction is enhanced
by Z, while the Coulomb repulsion is not. The perturbative treatment of
the Coulomb repulsion can be viewed as an expansion in 1/Z. In fact, we
will see that the perturbation theory gives good results for positive ions with
only two electrons, while it does not work very well for H−. We will then
improve it by a variation method, which improves the agreement between
the calculation and the data.
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−Eexp(eV) −E0 −E0 + Eee −Evar

H− 14.36 27.06 10.15 12.79
He 78.62 108.24 74.42 77.06
Li+ 197.14 243.54 192.80 195.45

Be++ 369.96 432.96 365.31 367.95
B3+ 596.4 676.50 591.94 594.58
C4+ 876.2 974.16 872.69 875.33

Table 1: Biding energies as measured Eexp, E0 calculated with the single-
particle Hamiltonian H0, with electron Coulomb self-energy added at the
1st order in perturbation E0 + Eee, and improvement with the variational
method Evar for two-electron atoms. The numbers are from “Introduction
to Quantum Mechanics,” Linus Pauling and E. Bright Wilson, Jr., McGraw-
Hill, 1935. H− binding energy from J.-Z. Tang et al, Phys. Rev. A 49, 1021
(1994); Prof. Jackson found the paper for me.

We regard the single particle Hamiltonian

H0 =
∑

i

(
~p2

i

2m
− Ze2

ri

)
(9)

as the unperturbed and the Coulomb repulsion terms

∆H =
∑
i<j

e2

rij

(10)

as perturbation to the system.
Both of two electrons are put in the 1s orbitals. Therefore, the Slater

determinant gives

|1s2〉 =
1√
2
[|1s↑1s↓〉 − |1s↓1s↑〉]. (11)

The unperturbed Hamiltonian has an eigenvalue on this state

H0|1s2〉 = E0|1s2〉 = 2

(
−Z

2e2

2aB

)
|1s2〉. (12)

This binding energy is too big compared to experimental values (see Table 1.
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Now we add the 1st order correction in ∆H. All we need to do is to
calculate the expectation value of ∆H in the unperturbed state:

∆E = 〈1s2| e
2

r12
|1s2〉. (13)

Using the unperturbed wave function Eq. (11), we find

∆E =
1

2

[
〈1s↑1s↓| e

2

r12
|1s↑1s↓〉 − 〈1s↑1s↓| e

2

r12
|1s↓1s↑〉

−〈1s↓1s↑| e
2

r12
|1s↑1s↓〉+ 〈1s↓1s↑| e

2

r12
|1s↓1s↑〉

]
. (14)

However, because ∆H commutes with the spin, the expression simplifes to

∆E =
1

2

[
〈1s↑1s↓| e

2

r12
|1s↑1s↓〉+ 〈1s↓1s↑| e

2

r12
|1s↓1s↑〉

]
. (15)

Finally, the spin part does not affect the expectation values, and we find

∆E = 〈1s1s| e
2

r12
|1s1s〉. (16)

This is calculated by the integral

∆E =
Z6

a6
B

∫
d~x1d~x2

e2

r12

(2e−Zr1/aBY 0
0 (θ1, φ1))

2(2e−Zr2/aBY 0
0 (θ2, φ2))

2. (17)

Because Y 0
0 = 1/

√
4π and the only piece that depends on angles is r12 =√

r2
1 + r2

2 − 2r1r2 cos θ12, one can perform cos θ12 integral and then r1, r2 in-
tegrals. But the following trick is useful when you evaluate similar integrals
with different states. Use the identities

1

r12

=
∞∑
l=0

rl
<

rl+1
>

Pl(cos θ12), (18)

where r< = min(r1, r2), r> = max(r1, r2), cos θ12 = (~x1 · ~x2)/r1/r2, and

Pl(cos θ12) =
4π

2l + 1

l∑
m=−l

Y m∗
l (θ1, φ1)Y

m
l (θ2, φ2). (19)
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Going back to Eq. (17), and replacing e2/r12 using the identities Eq. (18,19),
angular integrals in ~x1, ~x2 selects only l = 0, m = 0 piece in the summation.
Therefore one finds

∆E =
Z6

a6
B

∫ ∞

0
r2
1dr1r

2
2dr216

e2

r>

e−2Z(r1+r2) =
5

8

Ze2

aB

. (20)

Adding this energy to the single-particle energy Eq. (12), agreement between
data and calculation is already quite good.

2.2 Variational Method

The variational method uses the theorem that the expectation value of the
Hamiltonian in any state is larger than the ground-state energy eigenvalue.
Therefore, one can try to minimize the expectation value using a trial wave
function with respect to its parameters to get closer to the ground-state
energy eigenvalue.

We apply this method to the Helium-like atoms discussed in the previous
section. We take the trial wave function the same as before, expect that we
choose

ψ1s(~x) =

(
Z ′

aB

)3/2

e−Z′r/aB . (21)

The idea behind this choice that the presence of the other electron effec-
tivelyl screens the nuclear charge, resulting in a smaller Z ′ than the true Z.
We calculate the expectation value of the Hamiltonian using this modified
ψ1s and minimize it with respect to Z ′. Note that we do not change Z in
the Hamiltonian because it is a physical quantity. Note also that the wave
function is no longer an eigenstate of H0 once Z ′ 6= Z. Barring these points
in mind, the single particle piece is

〈1s| ~p
2

2m
− Ze2

r
|1s〉 =

Z ′e2

2aB

− ZZ ′e2

aB

. (22)

On the other hand, the calculation of the Coulomb repulsion is the same as
before and we find

〈1s1s| e
2

r12
|1s1s〉 =

5

8

Z ′e2

aB

. (23)

Therefore,

〈1s2|H|1s2〉 =
e2

aB

[
2

(
Z ′2

2
− ZZ ′

)
+

5

8
Z ′
]
. (24)
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Now, we minimize this expression with respect to Z ′, and find the minimum
is at Z ′ = Z − 5/16, and

Evar = − e2

aB

(16Z − 5)2

256
. (25)

The values are shown in Table 1. The agreement between data and theory
is further improved.

Obviously, the variational method can further be refined by using more
and more complicated trial wave function. Hylleraas used a trial wave func-
tion with fourteen parameters, and obtained a result that differs from data
only by 0.0016 eV. In fact, his calculated energy was lower than the data, in
apparent contradiction to the principle of the variational method. The reso-
lution is that, at this level of precision, one cannot trust the non-relativistic
Hamiltonian Eq. (8) any more, and needs to include relativistic effects, spin-
orbit coupling, etc. Because data of course includes all these additional ef-
fects, while Hylleraas used Eq. (8), his variational energy came out somewhat
lower than the experimental energy.

3 Multi-Electron Atoms

As you go to atoms with more electrons, the perturbation theory becomes
increasingly cumbersome. We can again start with the Slater determinant of
single-particle states |λ1, λ2, · · · , λN〉. Each |λi〉 refers to a state |ni, li,mi, si〉.
One can calculate the first-order perturbation in ∆H using the following
decomposition:

E0 =
∑

i

Eλi
, (26)

∆E =
∑
i<j

[
〈λiλj|

e2

rij

|λiλj〉 − 〈λiλj|
e2

rij

|λjλi〉
]
. (27)

Many of them trivially vanish because the perturbation commutes with spin.
The term with two states exchanged is called “exchange energy.”

One of the important consequences of the perturbation is to lift the de-
generacy among states with the same principal quantum number n. For
instance, 2s and 2p states are degenerate. For hydrogen-like atoms, the de-
generacy is lifted only by corrections of O(α2) due to the relativistic effect
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and the spin-orbit coupling. (It still leaves the degeneracy between 2s1/2 and
2p1/2, which is lifted by Lamb shift, a yet higher order effect.) However,
in multi-electron atoms, the degeneracy is lifted by the Coulomb repulsion
among electrons, which is a much larger effect.

As an example, consider three-electron atoms Li, Be+, B++, etc. With the
unperturbed (single-particle) Hamiltonian, 2 possible |1s22s〉 states for two
spin orientations and 6 possible |1s22p〉 states for three m = −1, 0,+1 values
with two spin orientations, are all degenerate. With only three electrons, it is
simple enough to calculate the perturbation, and you find that |1s22p〉 states
are higher than |1s22s〉 states. Degeneracy among |1s22p〉 or |1s22s〉 states
still remain, because of separate conservation of L and S in the absence of the
spin-orbit coupling. This leads to the well-known rule you learn in chemistry
class that you should fill 2s states first and then move on to 2p states later
on.

In general, higher l states have higher energies. This point is intuitively
understood as follows. The highest l = n − 1 state corresponds to classi-
cal circular orbit, and lower l values are more eccentric. The lowest l = 0
state has zero ellipsicity, i.e., the particle moves only along the radial direc-
tion with no angular motion. (Of course, such a trajectory does not exist
classically, but we are only talking about classical analogs! This point had
apparently caused a lot of confusion in early days of quantum mechanics
when people didn’t consider l = 0 state because of the prejudice from clas-
sical mechanics.) Therefore lower l states probe more of inner part of the
atom, while the higher l states stay in the outer parts. The other eletrons
surrounding the nucleus screen its electric charge, and the effect of screening
is more important at larger radii. Therefore the higher l states see the nu-
clear charge more screened, and hence they are less bound. This argument
qualitiatively explains why higher l states have higher energies due to the
Coulomb repulsion among electrons.

4 Self-Consistent Field Method

The discussion in the previous section suggests that the dominant effect of
the Coulomb repulsion among electrons is to modify the nuclear Coulomb
potential by screening effect. Therefore, one can hope that, with an appro-
priate modification of the Coulomb potential, we can incorporate the bulk of
the Coulomb repulsion effects while still using the language of single-particle
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states. This is the idea of the mean-field method, or self-consistent field
method.

There are at least two self-consistent field methods for multi-electron
atoms. One of them is based on semi-classical and statistical arguments,
called Thomas–Fermi model. The other more rigorous one is Hartree–Fock
model. We discuss them in order.

4.1 Thomas–Fermi Model

The Thomas–Fermi model is based on the semi-classical statistical argument
valid for a large number of electrons. If you fill up all the states up to the
Fermi level, by definition, the number of states below the Fermi level equals
the number of electrons. Given a mean-field potential, the number of states
is given by the size of the phase space volume in the unit of (2πh̄)3. On
the other hand, the number density of electrons determined this way should
reproduce the assumed mean-field potential. Putting them together one finds
a solution to the system. A spherical symmetry is assumed throughout the
discussions.

Suppose a distribution of electrons with the number density ρ(r). For the
total number of electrons N ,

N = 4π
∫
ρ(r)r2dr. (28)

The distribution of electron determines the Coulomb potential φ according
to the Poisson equation

∆φ =
1

r

d2

dr2
rφ = 4πeρ(r)− 4πZeδ(~x). (29)

Since the delta function has a support only at the origin, we can solve the
equation

1

r

d2

dr2
rφ = 4πeρ(r) (30)

and impose the boundary condition

lim
r→0

rφ(r) = Ze (31)

instead. Here, we allowed for the possibility that the number of electrons N is
different from the nuclear charge Z, i.e., ions. For neutral atoms N = Z. The
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physical reason behind the boundary condition is obvious: close to the origin,
the only charge inside the radius is that of the nucleus, and the Coulomb
potential is given only by the nucleus so that φ(r) ≈ Ze/r. More formal way
of deriving it is by using the normalization

Ne = 4πe
∫ ∞

0
drr2ρ(r)

=
∫ ∞

0
drr

d2

dr2
rφ

=

[
r
d

dr
rφ

]∞
0

−
∫ ∞

0
dr

d

dr
rφ

= 0− [rφ]∞0
= −(Z −N)e+ (rφ(r))|r→0 . (32)

In the last line, we used the fact that the total charge of the system is (Z−N)e
and hence the Coulomb potential at infinity must be given by (Z −N)e/r.

Of course the potential energy for an eletron is given by

V (r) = −eφ(r). (33)

The Poisson equation determines the potential in terms of the distribu-
tion. We need now to determine the distribution in terms of the potential
to find a self-consistent solution. At a given position r, the number density
can be estimated by the following semi-classical statistical argument. It is
assumed that all states up to the Fermi energy εF are filled. Note that there
are 2 states for each spin in a phase space volume in the unit of (2πh̄)3 in the
semi-classical limit. Then the number density in the phase space is given by

n(~r, ~p) =


2

(2πh̄)3
for ~p2

2m
− eφ < εF

0 for ~p2

2m
− eφ > εF

(34)

From this point on, we define Φ by

eΦ = eφ+ εF (35)

so that the number density is written as

n(~r, ~p) =


2

(2πh̄)3
for ~p2

2m
− eΦ < 0

0 for ~p2

2m
− eΦ > 0

(36)
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Φ still satisfies the same Poisson equation Eq. (29) because a constant dis-
appears under the Laplacian ∆ and the same boundary condition Eq. (31).

To obtain the number density in space ρ(r), we integrate the phase space
density in the momentum space. To satisfy the conditions in Eq. (36), the
phase space density is constant 2/(2πh̄)3 up to p = (2meΦ)1/2 and hence

ρ(r) =

{
2

(2πh̄)3
4π
3

(2meΦ)3/2 (eΦ > 0)

0 (eΦ < 0)
. (37)

Therefore we now try to solve coupled equations Eq. (29) and Eq. (37) under
the boundary condition Eq. (31). This is done in a Z-independent way by
introducing variable x by

r = Z−1/3bx, b =
1

2

(
3π

4

)2/3 h̄2

me2
' 0.5 Å, (38)

and a new function χ defined by

Φ(r) =
Ze

r
χ(r). (39)

The meaning of the function χ(r) is the degree how much the nuclear charge is
screened by the surrounding electrons. Then the number density is rewritten
as

ρ(r) =

 Z2

4πb3

(
χ
x

)3/2
(χ > 0)

0 (χ < 0)
. (40)

The Poisson equation Eq. (29) then reads as

d2χ

dx2
=

{
x−1/2χ3/2 (χ > 0)

0 (χ < 0)
. (41)

We solve this equation under the boundary condition χ(0) = 1. What is
the required behavior of χ(x) at x → ∞? To see this, we first note that
the second derivative χ′′ is always positive or zero, and hence the function is
convex. It means that if χ(x) crosses zero, it does so only once. Let us call
the position of the zero x0. Since ρ > 0 only for χ > 0 (see Eq. (40)), all
electrons are inside the radius x0. Therefore the total number of electrons is

N =
∫ Z−1/3bx0

0
4πr2dr

Z2

4πb3

(
χ

x

)3/2

= Z
∫ x0

0
dxxχ(x)′′

= Z[xχ′ − χ]x0
0 = Z[x0χ

′(x0) + 1]. (42)
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When N = Z, χ′(x0) = 0. If x0 were finite, χ(x) hits zero with a finite slope
and χ′(x0) cannot vanish. Therefore a neutral atoms require that x0 = ∞,
i.e., χ(x) approaches zero at infinity. This dictates a particular value of
χ′(0) = −1.588070845 to solve the differential equation numerically.

A technical remark. When you solve the differential equation Eq. (41) numerically,
one needs to avoid the singularity 1/

√
x. One way to do so is to first notice that χ(x) =

1 + 4
3x3/2 solves the equation at the origin together with χ(0) = 1. One can write

χ(x) =
(

1 +
4
3
x3/2

)
y(x),

and rewrite the differential equation as(
1 +

4
3
x3/2

)
y′′(x) + 4x1/2y′(x) +

1
x1/2

y(x)

[
1−

(
1 +

4
3
x3/2

)3/2

y(x)1/2

]
= 0.

Because the behavior of y(x) at the origin is 1+χ′(0)x+O(x3/2), the factor in the square
bracket vanishes as O(x) and hence the whole equation is regular. This can be put in
Mathematica, with an If statement to make the factor in the square bracket vanish at
x = 0, and you can choose values of χ′(0) by trial and error to find a solution that goes
smoothly to zero at the infinity.

When N < Z (positive ions), however, x0χ
′(x0) = −(Z−N)/Z and hence

χ(x) hits zero at a finite x0. Beyond x0, χ
′′ = 0 and hence

χ(x) = (x− x0)χ
′(x0) = −r − r0

r0

Z −N

Z
, (43)

where r0 = Z−1/3bx0. Therefore the Coulomb potential is

eφ = eΦ− εF = −Ze
2

r

r − r0
r0

Z −N

Z
− εF =

(Z −N)e2

r
− (Z −N)e2

r0
− εF .

(44)
Because there are no electrons beyond r0 and hence the Coulomb potential
must be simply φ = (Z −N)e/r, we find the Fermi energy

εF = −(Z −N)e

r0
. (45)

The solution is obtained by χ(x) with χ′(x0) < −1.588070845 so that x0χ
′(x0) =

−(Z −N)/Z.
Thomas–Fermi model is a crude model based on semi-classical argument

and statistical treatment, but is not so bad in practice. In Figs. 6,7,8, we will
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Figure 1: Numerical calculation of χ(x) for neutral atoms.

show the comparison between the Thomas–Fermi model and more detailed
Hartree–Fock–Slater model as described next for the ioniziation energies of
electrons in given orbitals. HFS model is known to agree with data at a few
percent level.

With the Thomas–Fermi model, we can calculate the total binding energy
of neutral atoms that can be compared to the data. Because the number

density of electrons is non-zero only for p2

2m
< eΦ = Ze2

r
χ, or |~p| <

√
2meΦ(r),

we can obtain the kinetic energy by the phase space integral

EK = 2
∫ d~pd~x

(2πh̄)3

~p2

2m
θ(
√

2meΦ(r)− p)

=
1

5(2πh̄)3m

∫ ∞

0
dr(2meΦ(r))5/2. (46)

Plugging in Φ = Ze
r
χ, and changing the integration variable r = Z−1/3bx, we

find

EK =
3

5

Z7/3e2

b

∫ ∞

0
dx
χ5/2

x1/2
. (47)

Using the differential equation χ′′ = χ3/2/x1/2 and the boundary conditions,
χ(0) = 1 and χ(∞) = 0, we can perform this integration analytically. We
first note ∫ ∞

0

χ5/2

x1/2
dx =

∫ ∞

0
χ
χ3/2

x1/2
dx =

∫ ∞

0
χ′′χdx

= [χχ′]∞0 −
∫ ∞

0
χ′χ′dx = −χ′(0)−

∫ ∞

0
χ′2dx. (48)
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Figure 2: Comparison of Thomas–Fermi, Thomas–Fermi–Dirac calculations
to data from Richard Latter, Phys. Rev. 99, 510 (1955).
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Figure 3: Comparison of Thomas–Fermi, Thomas–Fermi–Dirac calculations
to data from Richard Latter, Phys. Rev. 99, 510 (1955).
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Figure 4: Comparison of Thomas–Fermi, Thomas–Fermi–Dirac calculations
to data from Richard Latter, Phys. Rev. 99, 510 (1955).
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Figure 5: Comparison of Thomas–Fermi, Thomas–Fermi–Dirac calculations
to data from Richard Latter, Phys. Rev. 99, 510 (1955).
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Figure 6: Comparison of the screening function between Thomas–Fermi and
Hartree–Fock–Slater methods. Taken from ”Quantum Theory of Matter,”
by John C. Slater, McGraw-Hill, 1968.

On the other hand, there is another way to do the integration by parts,∫ ∞

0

χ5/2

x1/2
dx = [2x1/2χ5/2]∞0 −

∫ ∞

0
2x1/2 5

2
χ3/2χ′dx

= −5
∫ ∞

0
x1/2χ3/2χ′dx = −5

∫ ∞

0
xχ′′χ′dx = −5

∫ ∞

0
x
d

dx

1

2
χ′2dx

= −5
{[
x

1

2
χ′2
]∞
0
−
∫ ∞

0

1

2
χ′2dx

}
=

5

2

∫ ∞

0
χ′2dx. (49)

Comparing Eqs. (48,49), we find

∫ ∞

0

χ5/2

x1/2
dx = −5

7
χ′(0) > 0,

∫ ∞

0
χ′2 = −2

7
χ′(0) > 0. (50)

Therefore, we find

EK =
3

7

Z7/3e2

b
(−χ′(0)). (51)

The potential energy between the electron and the nucleus is

EeA = −
∫
d~rρ(r)

Ze2

r
= −Z

7/3e2

b

∫ ∞

0
dx
χ3/2

x1/2
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Figure 7: Comparison of ionization energies calculated with Thomas–Fermi
model, Thomas–Fermi–Dirac model, and Hartree–Fock–Slater model. Taken
from ”Quantum Theory of Matter,” by John C. Slater, McGraw-Hill, 1968.
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Figure 8: Comparison of ionization energies calculated with Thomas–Fermi
model, Thomas–Fermi–Dirac model, and Hartree–Fock–Slater model. Taken
from ”Quantum Theory of Matter,” by John C. Slater, McGraw-Hill, 1968.
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= −Z
7/3e2

b

∫ ∞

0
χ′′dx = −Z

7/3e2

b
[χ′(x)]∞0 = −Z

7/3e2

b
(−χ′(0)).(52)

Finally, the electron-electron Coulomb (positive) energy is given by

Eee =
1

2

∫
d~r1d~r2ρ(r1)

e2

|~r1 − ~r2|
ρ(r2). (53)

Using the multipole expansion of the Coulomb potential, we find only the
l = 0 contributes due to the spherical symmetry of the electron number
density ρ(r). Therefore,

Eee =
1

2

∫
r2
1dr1dΩ1r

2
2dr2dΩ2ρ(r1)ρ(r2)

e2

r>

4πY 0
0 (Ω1)Y

0
0 (Ω2)

= e2(4π)2
∫ ∞

0
dr1r

2
1

∫ r1

0
dr2r

2
2ρ(r1)ρ(r2)

1

r1
. (54)

Now changing the variables to x1,2,

Eee =
Z7/3e2

b

∫ ∞

0
dx1

χ(x1)
3/2

x
1/2
1

∫ x1

0
x

1/2
2 χ(x2)

3/2. (55)

Using the differential equation χ′′ = χ3/2/x1/2, it simplifies to

Eee =
Z7/3e2

b

∫ ∞

0
dx1χ

′′(x1)
∫ x1

0
x2χ

′′(x2). (56)

Integrating in parts in x1,

Eee =
Z7/3e2

b

{[
χ′(x1)

∫ x1

0
dx2x2χ

′′(x2)
]∞
0

+
∫ ∞

0
dx1χ

′(x1)x1χ
′′(x1)

}
. (57)

The first term in the curly braces vanishes at the boundaries, while the second
term can be integrated in parts again (relabeling x = x1),

Eee =
Z7/3e2

b

{
−
[
x

1

2
χ′(x)2

]∞
0

+
∫ ∞

0
dx

1

2
χ′(x)2

}
=

Z7/3e2

2b

∫ ∞

0
χ′(x)2. (58)

Using Eq. (50),

Eee =
1

7

Z7/3e2

b
(−χ′(0)). (59)
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Figure 9: The comparison of the total binding energy of neutral atmos be-
tween the Thomas–Fermi model (solid line) and data (dots) taken from J. F.
Barnes and R. D. Cowan, Phys. Rev. 132, 236-240 (1963).

Putting Eqs. (51,52,59) together, we find the binding energy,

EB = |EK + EeA + Eee| =
3

7

Z7/3e2

b
(−χ′(0)) = 20.9 eVZ7/2. (60)

It is noteworthy that the virial theorem holds, EeA + Eee = −2EK . This
result compares well with the data, given how crude the model is.

4.2 Hartree–Fock Model

A better method which does not rely on the statistical semi-classical argu-
ment but still depends on the individual particle approximation and hence
ignores correlations in the wave function is the Hartree–Fock method. This
model is supposed to give the best variational wave function within the in-
dividual particle approximation.

The basic idea is the self-consistency, as in the Thomas–Fermi model. The
difference is that instead of using a smooth semi-classical electron number
density ρ(r), we study the single-particle wave functions.

We take a trial wave function in terms of a Slater determinant

|Ψ〉 =
1√
N !

det


|ψ1(1)〉 |ψ1(2)〉 · · · |ψ1(N)〉
|ψ2(1)〉 |ψ2(2)〉 · · · |ψ2(N)〉

...
...

. . .
...

|ψN(1)〉 |ψN(2)〉 · · · |ψN(N)〉

 . (61)

21



The notation here is that |ψi(j)〉 is a state where the particle j occupies the
state i. The Hamiltonian is the same as before Eq. (8), and the expectation
value of the Hamiltonian is given by

E = 〈Ψ|H|Ψ〉

=
∑

i

〈ψi|
(
~p2

2m
− Ze2

r

)
|ψi〉

+
∑
i<j

[
〈ψi(1)ψj(2)| e

2

r12
|ψi(1)ψj(2)〉 − 〈ψi(1)ψj(2)|

e2

r12
|ψj(1)ψi(2)〉

]
.

(62)

From this expression, we take the variation with respect to single particle
states |ψi〉. Note that we can regard the variation of the ket |ψi〉 and the bra
〈ψi| independently because they are both complex. Taking the variation of
the expectation value E with the bra 〈ψi|,

δE = (δ〈ψi|)
(
~p2

2m
− Ze2

r

)
|ψi〉

+
∑
j 6=i

(δ〈ψi(1)|)
[
〈ψj(2)|

e2

r12
|ψi(1)ψj(2)〉 − 〈ψj(2)|

e2

r12
|ψj(1)ψi(2)〉

]
.

(63)

Here, we used the fact that the sum
∑

i<j is the same as 1
2

∑
i6=j, and then that

the variation with respect to i and j give the same contribution to reduce
the sum to

∑
i6=j.

However, the above variation missed the important fact that we need to
preserve the orthonormality of the set of single particle states |ψi〉. In order
to do so, we use Lagrange multiplier method

δ[E − λij(〈ψi|ψj〉 − δij)] = 0, (64)

where λij are the Lagrange multipliers. Note that λij = λ∗ji because of
the property 〈ψi|ψj〉 = 〈ψj|ψi〉∗ and hence they form a hermitean matrix.
Therefore, the variational method gives the condition(

~p2

2m
− Ze2

r

)
|ψi〉

+
∑
j 6=i

[
〈ψj(2)| e

2

r12

|ψi(1)ψj(2)〉 − 〈ψj(2)|
e2

r12
|ψj(1)ψi(2)〉

]
− λij|ψj〉 = 0.

(65)
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The term in the square bracket with i and j interchanged is called the ex-
change term. Now we rewrite this equation in the position space. Taking the
inner product of this equation with the position eigenbra 〈~x|, we find(

− h̄
2∆

2m
− Ze2

r

)
ψi(~x)

+
∑
j 6=i

∫
d~yψj(~y)

∗
[

e2

|~x− ~y|
ψj(~y)ψi(~x)−

e2

|~x− ~y|
ψi(~y)ψj(~x)δmsi,msj

]
= λijψj(~x). (66)

This is the Hartree–Fock equation. An important point here is that the
second term in the square bracket survives only when the state i and j have
the same spin. Now, note that λij form a hermitean matrix, and we can
always go to the basis of single particle states where the matrix λij is diagonal
with real eingenvalues, λij = δijλi, without a loss of generality. We always
use such a basis hereafter. Then the r.h.s. of Eq. (66) is simply λiψi(~x) and
the Hartree-Fock equation becomes basically an eigenvalue equation for the
single-particle states. Note also that the summation

∑
j 6=i can include j = i

without changing the equation because the portion j = i is subtracted by the
exchange term. Without this trick, we had to solve the eigenvalue equation
with different differential operator for each state ψi, but this trick makes the
equation the same for all i,(

− h̄
2∆

2m
− Ze2

r

)
ψi(~x) + Vee(~x)ψi(~x)−

∫
d~yV ex

ee (~x, ~y)ψi(~y) = λiψi(~x), (67)

with

Vee(~x) =
∫
d~y

e2

|~x− ~y|
∑
j

|ψj(~y)|2 (68)

is the Coulomb potential for all electrons in the atom, and

V ex
ee =

∑
j

e2

|~x− ~y|
ψ∗j (~y)ψj(~x)δmsi,msj

(69)

is the exchange term. Eq. (67) can now be regarded an eigenvalue equation
similar to conventional Schrödinger equations except that it has a non-local
potential term V ex

ee . Except this non-local term, it has a mean-field potential

VC(~x) = −Ze
2

r
+
∫
d~y

e2

|~x− ~y|
ρ(~y) (70)
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for every state ψi(~x), where Vee is determined by ψi(~x) as in Eq. (68) and
hence is a self-consistent field. This equation can be solved numerically by
iterative method. First, one take an ansatz for the self-consistent field VC(~x),
solves the eigenvalue equation Eq. (67), and use the solutions to re-evaluate
the self-consistent field VC . In general the result is different from the original
ansatz, and you solve the eigenvalue equation again. You keep doing it
until the input self-consistent field and the output self-consistent field are
close enough within the predefined accuracy. For many atoms and simple
molecules, the Hartree–Fock method is used extensively to work out energy
levels and electronic structures.

4.3 Slater’s Approximation to the Exchange Term

The exchange term, however, complicates the analysis. Hartree, when he
originally proposed this method, did not know the need for anti-symmetrizing
the wave function, and his equation did not have the exchange term. Such an
equation is called Hartree equation. However, we cannot ignore the exchange
term. Slater later introduced another method to simplify the exchange term
based on the Fermi-liquid approximation of the electronic states. The as-
sumption is that one can evaluate the exchange term using the plane wave
states instead of true single-particle wave functions in a given atom. Using
the plane wave

ψi(~x) =
1√
V
ei~ki·~x, (71)

where V is the volume introduced to normalized the wave function and ~ki

the wave vector, we can evalute the exchange integral∫
d~yψj(~y)

∗ e2

|~x− ~y|
ψj(~x)ψi(~y) =

1

V

4πe2

|~ki − ~kj|2
ψi(~x). (72)

Then we sum over j to estimate exchange term as
∑

j = 2
(2π)3

V
∫ kF
0 d~kj, where

the numerator 2 is the spin degrees of freedom. To obtain the number density
ρ = N/V , the integral goes up to the Fermi momentum pF = h̄kF such that

ρ =
N

V
=

2

(2π)3

4π

3
k3

F . (73)

Going back to Eq. (72) and performing the integral,∑
j

∫
d~yψj(~y)

∗ e2

|~x− ~y|
ψj(~x)ψi(~y)δmsi,msj
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=
1

(2π)3
V
∫ kF

0
d~kj

1

V

4πe2

|~ki − ~kj|2
ψj(~x) = e2

kF

2π
4F (η)ψj(~x), (74)

where

F (η) =
1

2
+

1− η2

4η
ln

1 + η

1− η
(75)

for η = |~ki|/kF . The function F (η) takes values between F (0) = 1 and
F (1) = 1/2. This term corrects for the fact that the anti-symmetry of the
fermionic wave function “repels” other electrons from the vicinity of the
electron of the interest (“Fermi hole”) and the mean-field potential Eq. (70)
must be correspondingly corrected to

VC(~x) = −Ze
2

r
+
∫
d~y

e2

|~x− ~y|
ρ(~y)− e2

(
3

8π
ρ(~x)

)1/3

4F (η). (76)

Finally, F (η) is taken at is average value

F (η)average =

∫ 1
0 η

2F (η)dη∫ 1
0 η

2dη
=

3

4
(77)

and we find

VC(~x) = −Ze
2

r
+
∫
d~y

e2

|~x− ~y|
ρ(~y)− 3e2

(
3

8π
ρ(~x)

)1/3

. (78)

This is the Hartree–Fock–Slater (HFS) approximation. There is also a school
which prefers F (η)min = 1/2 instead of 3/4. This may be called HFS’.

4.4 Comparison to Experiments

In order to compare Hartree–Fock results to experiments, we need to figure
out the physical meaning of the eigenvalues λi. Going back to Eq. (66) for
diagonal λi, we take inner product with 〈ψi| and sum over i:

∑
i

〈ψi|
(
~p2

2m
− Ze2

r

)
|ψi〉

+
∑
i,j

[
〈ψi(1)ψj(2)| e

2

r12

|ψi(1)ψj(2)〉 − 〈ψi(1)ψj(2)|
e2

r12
|ψj(1)ψi(2)〉

]
=
∑

i

λi.

(79)
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HF HFS HFS’ Observed
1s 118.606 117.830 118.678 117.85
2s 12.321 11.901 12.345 12.15
2p 9.571 9.125 9.607 9.15
3s 1.277 1.146 1.292 1.074
3p 0.591 0.473 0.603 0.583
−W 526.818 526.679 526.795 529.31

Table 2: Ionization potentials and total energy in the atomic unit (e2/a0 = 1)
for the normal configuration of neutral Ar, obtained by various methods: HF,
HFS, HFS’. Taken from “Atomic Structure,” by E. U. Condon and Halis
Odabasi, Cambridge University Press, 1980.

Atom HFS’ HFS HF Observed
He -2.72 -2.70 -2.86 -2.90
Li -7.17 -7.15 -7.43 -7.48
Ne -127.49 -127.38 -128.55 -128.94
Ar -524.51 -524.35 -526.82 -527.60

Table 3: Total energies of atoms in the atomic unit (e2/a0 = 1). Taken from
“Density-Functional Theory of Atoms and Molecules”, by Robert G. Parr
and Weitao Yang, Oxford University Press, 1989.

Clearly, this is not the total energy of the atom, because it counts the inter-
electron Coulomb potential twice. However, when one removes an electron
of an atom, you definitely want to include the interaction of that particular
electron with every other electron in the atom. Namely, −λi has the interpre-
tation of the ionization energy to take an electron in the single-particle state
|ψi〉 out of the atom. This interpretation is based on the assumption that
the removal of the particular electron will not change the quantum states of
other electrons significantly. Nonetheless, the interpretation allows the test
of Hartree–Fock calculations by data.

Figs. 10,11 compare the HFS calculations of the ionization energies to the
data, which show an overall agreement at a few percent level.
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Figure 10: Comparison of ionization energies calculated with Hartree–Fock–
Slater model to the data. Taken from “Quantum Theory of Matter,” by John
C. Slater, McGraw-Hill, 1968.
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Figure 11: Comparison of ionization energies calculated with Hartree–Fock–
Slater model to the data. Taken from “Quantum Theory of Matter,” by John
C. Slater, McGraw-Hill, 1968.
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Atom HF Observed
Li 5.3 5.4
Be 8.0 9.3
B 7.9 8.3
C 10.8 11.3
N 14.0 14.5
O 11.9 13.6
F 16.2 17.4
Ne 19.8 21.6
Na 4.9 5.1
Ar 14.8 15.8
K 4.0 4.3

Table 4: Ionization Potentials in electron volts of Some Light Atoms. Taken
from “Density-Functional Theory of Atoms and Molecules”, by Robert G.
Parr and Weitao Yang, Oxford University Press, 1989.

5 LS Coupling

For a given electronic configuration, there is still arbitrariness in how elec-
trons occupy specific states. The empirical Hund’s rule states that the ground
state is obtained by the following rule:

1. Maximize total spin S.

2. Then minimize L.

3. If an orbital is less than half-filled, J = |L−S|. If more than half-filled,
J = |L+ S|. (If it is exactly half-filled, L = 0 and J = S.)

In fact, all atoms except for Ce have the ground state consistent with the
rule.

5.1 Less Than Half-Filled

To understand why the Hund’s rule holds, let us consider the electronic
configuration (np)2 for the group IV elements: C, Si, Ge, Sn, Pb. We assume
that the rest of the electrons form a closed shell and do not consider the
impact of remaining two electrons on them.

29



Each electron has l = 1, s = 1/2. We ignore the spin-orbit interaction,
and hence total L and S are separately conserved. Therefore, we add two
l = 1 to form L = 0, 1, 2 combinations, and two s = 1/2 to S = 0, 1. Note
that L = 0, 2 and S = 1 are symmetric, while L = 1 and S = 0 anti-
symmetric. Because the overall wave function must be anti-symmetric under
the interchange of two electrons, the only allowed combinations are L = 0, 2
with S = 0 or L = 1 with S = 1. In the former case, the total angular
momentum is J = L, and hence we find 1S0 and 1D2 states. Here, the
spectroscopic symbols have the notation 2S+1LJ . For the latter case, we add
L = 1 and S = 1 to obtain J = 0, 1, 2, and hence there are 3P0,

3P1, and 3P2

states.
The orbital wave function of two electrons is given by

ψ(~x1, ~x2) = Rnl(r1)Rnl(r2)
∑

m1,m2

Y m1
l (Ω1)Y

m2
l (Ω2)〈llm1m2|LM〉. (80)

In our case, l = 1, but I keep it general in the expressions. Note that the
Clebsch–Gordan coefficients are symmetric or anti-symmetric when two l are
the same,

〈llm2m1|LM〉 = (−1)L〈llm1m2|LM〉. (81)

Therefore, the sum over m1 and m2 (subject to the constraint m1 +m2 = M)
takes care of the symmetrization or anti-symmetrization automatically.

Now we calculate the expectation value of the Coulomb repulsion between
two electrons. We use the multipole expansion of the Coulomb potential
Eqs. (18,19) again. We also use the identity (Sakurai Eq. (3.7.73)),

∫
dΩY m∗

l Y m1
l1
Y m2

l2
=

√√√√(2l1 + 1)(2l2 + 1)

4π(2l + 1)
〈l1l200|l0〉〈l1l2m1m2|lm〉 (82)

The expectation value is found to be

〈LM | e
2

r12

|LM〉 =
∑
λ

F λ(np, np)∑
µ,m1,m2
m′

1
,m′

2

〈llm1m2|LM〉〈llm′
1m

′
2|LM〉〈lλ00|l0〉2〈lλm′

1µ|lm1〉〈lλm2µ|lm′
2〉,

(83)

where

F λ(np, np) = e2
∫ ∞

0
r2
1dr1r

2
2dr2

rλ
<

rλ+1
>

Rnl(r1)
2Rnl(r2)

2 > 0. (84)
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The variables λ, µ are “l” and “m” in the multipole expansion of the Coulomb
potential. Because of the spherical symmetry of the problem, the result
actually does not depend on M , even though it is not easy to see in this
form. Due to the factor 〈lλ00|l0〉, the sum over λ reduces to only λ = 0 and
λ = 2 terms.

Wigner invented more compact notation called 3j- and 6j-symbols. The result can be
rewritten as

〈LM | e2

r12
|LM〉 =

∑
λ

Fλ(np, np)(−1)L(2l + 1)2
(

l l λ
0 0 0

){
l l L
l l λ

}
. (85)

The symbol with the parenthesis is the 3j-symbol, while that with the curly braces is the
6j-symbol. You can find their definitions in many quantum mechanics textbooks, such as
Messiah. Mathematica has both 3j- and 6j-symbols built in, and their evaluations are
very easy. This expression also makes it clear that the result does not depend on M .

In our case of l = 1, we find

〈(np)2, L = 0| e
2

r12
|(np)2, L = 0〉 = F 0 +

2

5
F 2, (86)

〈(np)2, L = 1| e
2

r12
|(np)2, L = 1〉 = F 0 − 1

5
F 2, (87)

〈(np)2, L = 2| e
2

r12
|(np)2, L = 2〉 = F 0 +

1

25
F 2. (88)

Therefore, L = 1 state has the lowest energy. This can be understood in-
tuitively in the following fashion. When the spatial wave function is anti-
symmetrized, the probability for two electrons to come close is minimized,
and so is the Coulomb repulsion energy.

Since the anti-symmetric orbital wave function minimizes the Coulomb
repulsion, it necessarily picks symmetric spin wave function. In our case, 3PJ

states have lower energies than 1S0 and 1D2 states. It is important to note
that S = 1 (maximum total spin) is chosen not because there is an interaction
that prefers to line up the spins, but rather because the Coulomb repulsion
prefers the orbital wave function to be as anti-symmetric as possible, and
hence the spin wave function as symmetric as possible due to the overall
anti-symmetry of the multi-fermion wave functions. This is the origin of
the magnetism; spins want to line up due to the Fermi statistics. Now we
understand the rules 1. and 2.

The last rule is the consequence of the spin-orbit coupling. As we have
seen in the case of hydrogen-like atoms, the spin-orbit coupling Eq. (6) prefers

31



C 1.13
Si 1.48
Ge 1.50
Sn 1.39
Pb 1.62

Table 5: The ratio of energy splittings in group IV elements defined in
Eq. (89), to be compared to 1.5 we calculated.

the spin and the orbital angular momentum to be anti-aligned. This carries
over to the multi-electron configuration as well. Hence, the rule 3. In our
case of (np)2 configurations, the states are ordered 3P0,

3P1, and 3P2 from
the ground state to the excited states. In general, by anti-aligning L and S,
we find J = |L− S|.

Putting everything together, we find the (np)2 states are ordered as 3P0,
3P1,

3P2,
1D2,

1S0 from below. Indeed, the spectrum data at NIST web site
http://physics.nist.gov/PhysRefData/Handbook/periodictable.htm con-
firms this result for the group IV elements.

We can perform quantitative tests of the result. The energy splittings are
given by

E(1S)− E(1D)

E(1D)− E(3P )
=

3

2
. (89)

To use the data, we need to eliminate the energy splitting due to the spin-
orbit coupling, which can be done by calculating the weighted average of the
energies

E(3P ) =
1

9
(E(3P0) + 3E(3P1) + 5E(3P2)). (90)

Using the data at NIST, we find numbers in Table 5.
The agreement is excellent for medium-sized atoms, Si and Ge. The worse

result for the heavier atoms is due to the fact that the spin-orbit interaction
is more important for them. Because the spin-orbit coupling is a relativis-
tic effect, it is proportional to (v/c)2 ' (Zα)2 and hence grows with Z. In
general, the LS coupling scheme does not work very well. An alternative
scheme called jj coupling may be used, where l and s are summed for in-
dividual electron first, and then each j is combined together to form the
total J . It is known that neither LS and jj couplings provide good results
for large atoms; i.e., Z is not very small, but not very large either. Quan-
titative understanding of the spin-orbit coupling is somewhat complicated,
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level data MCHF
3P0 0 0
3P1 16.41671 16.33
3P2 43.41350 43.03
1D2 10192.66 10268.23
1S2 21648.02 21818.60

Table 6: The comparison of carbon atomic levels with the MCHF calcula-
tions. Taken from http://atoms.vuse.vanderbilt.edu/ The unit is cm−1.

because there are spin-orbit couplings associated with both nucleus-electron
and electron-electron Coulomb potentials. In practice, the nucleus-electron
spin-orbit coupling is more important then the electron-electron one, but the
detailed calculation requires both.

You may be surprised that the agreement is bad for the smallest atom,
C. This can be understood in the following way. In the carbon atom, the
“closed shell” we ignored in our discussion consists of four electrons, while
we studied the remaining two electrons. Because the number of electrons
in the “closed shell” and in the “open shell” are comparable, the Coulomb
repulsion of the valence electrons affect the wave functions of the “closed
shell” electrons. Strictly speaking, this is an effect at the second-order in
perturbation, yet it seems to be quite significant.

The professionals in the theoretical atomic physics use the Hartree–Fock
method to calculate the wave functions, and form their linear combinations to
obtain specific 2S+1LJ states. This method is called the Multi-Configuration
Hartree–Fock. The comparison of data and calculations is shown in Table 6
for the carbon atom; the agreement is impressive.

5.2 Half-Filled

When an orbital is half-filled, namely when (2l + 1) electrons occupy an nl
orbital, the maximum spin is S = l + 1

2
, while the totally anti-symmetric

orbital wave function gives L = 0. The orbital wave function is nothing by
the Slater determinant of all m states from m = −l to m = l. There is only
one such wave function, and hence the total orbital angular momentum is
L = 0 (multiplicity one). Because L = 0, the only possible total angular
momentum is J = S = l + 1

2
, and hence the rule 3. is not needed.
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O 1.14
S 1.43
Se 1.49
Te 1.49
Po no data

Table 7: The ratio of energy splittings of group VI elements defined in
Eq. (89), to be compared to 1.5 we calculated.

5.3 More Than Half-Filled

When an orbital is more than half-filled, it becomes awkward to discuss
each electron. There is no way to totally anti-symmetrize the orbital wave
function because each m is already used; some of the same orbital wave
function needs to be used twice. Correspondingly, the spin wave function
should not be totally symmetric. Both the orbital and spin wave functions
are partially anti-symmetric and partially symmetric, so that their produce
is totally anti-symmetric. Such a “mixed-symmetry” wave functions are not
easy to discuss on general grounds.

However, there is a useful trick to discuss electrons in an orbital that is
more than half-filled. It uses the concept of “holes.” For example, consider
the (np)4 configuration (group VI elements). The orbital accommodates six
electrons, while only four are there. If all six states are filled, we know that
the overall Slater determinant has L = S = J = 0. Therefore, instead of
considering four electrons in the np orbital, we can consider removing two
electrons from the filled np orbital, or two “holes” in the np orbital.

A hole means a vacancy. Therefore, a hole carries a positive electric charge
relative to the filled state. Concerning the Coulomb repulsion, the calculation
of the expectation value is exactly the same as that for the electrons because
(−e)2 = e2. Therefore, the previous result can be used without modification
on the 3P , 1D, and 1S states.

The energy splittings in the group VI elements are shown in Table 7.
Again there is an excellent agreement for the medium-sized atoms, while the
agreement is bad for the smallest one, O. (There does not seem data for Po.)

Therefore the rules 1. and 2. are understood precisely the same way as
for the case of less than hall-filled orbitals. Namely, the energy is the lowest
when the orbital wave function is totally anti-symmetrized for holes , which
requires the totally symmetrized spin wave function for holes .
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level data MCHF
3P2 0 0
3P1 158.265 156.05
3P0 226.977 223.33
1D2 15867.862 15868.34
1S2 33792.583 33792.22

Table 8: The comparison of oxygen atomic levels with the MCHF calcula-
tions. Taken from http://atoms.vuse.vanderbilt.edu/ The unit is cm−1.

The rule 3., however, appears different from the case of less than half-
filled orbitals. This is also understood using the concept of hole. Because
the hole has the opposite electric charge from that of the electron, the sign of
the spin-orbit coupling of the electron-nucleus Coulomb potential reverses.
Therefore a hole prefers to have its spin and orbital angular momenta aligned ,
instead of anti-aligned. Indeed, the data show that the states are ordered
as 3P2,

3P1,
3P1,

1D2,
1S0 from below. In Table 8, the data and the MCHF

calculations are compared. The agreement is again excellent.
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