221B Lecture Notes

Notes on Spherical Bessel Functions

1 Definitions

We would like to solve the free Schrodinger equation

_ [i;ﬂ_ l(l;;l)] R(r) = ’527’; R(r). (1)

R(r) is the radial wave function (%) = R(r)Y,"(0,¢). By factoring out
h?/2m and defining p = kr, we find the equation

pdp?’ " T2

ng AR 1] R(p) = 0. 2)

The solutions to this equation are spherical Bessel functions. Due to some
reason, I don’t see the integral representations I use below in books on math-
emtical formulae, but I believe they are right.

The behavior at the origin can be studied by power expansion. Assuming
R o p™, and collecting terms of the lowest power in p, we get

nn+1)—1(+1)=0. (3)
There are two solutions,
n=1 or —1—1. (4)

The first solution gives a positive power, and hence a regular solution at the
origin, while the second a negative power, and hence a singular solution at
the origin.

It is easy to check that the following integral representations solve the
above equation Eq. (2)):

hl(l) (,0) _ (p??)l /—:loo eipt<1 N tz)ldt, (5>

and

hl(2) (p) _ (p/Q)l /ioo 6ipt<1 . t2)ldt. (6)

{! 1
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By acting the derivatives in Eq. , one finds

[1 & Ul+1) ] )
+ 1| by (p)
pdp?” p?
(p/2)t rie ou | L+T1)  2(04+ 1)t 5, I(I+1)
:_Pl! /il(1—t)[ e + 1| dt
l 100 .
_(p??) ;Ll jt[ezpt(l _t2)l+1} dt. (7)

Therefore only boundary values contribute, which vanish both at ¢ = 1 and
t = io0o for p = kr > 0. The same holds for hl(Q)(p).
One can also easily see that h 1)*( ) = hl(z) (p*) by taking the complex
conjugate of the expression Eq. (b)) and changing the variable from ¢ to —t.
The integral representation Eq. can be expanded in powers of 1/p.

For instance, for hl(l), we change the variable from ¢t to x by t = 1 4 iz, and
find

N poo . l
hl(l) (p) - (p/ ) ‘/O 6%p(1+2$)xl(_2i)l (1 o ;) idr

[! i
= z(p{?) Z C’k/ e P <—2$Z_>ka:lda:

e L (=i k(l+k)! 1

= —i— P (8)

p iz 2PENI—=FK) p

Similarly, we find

Therefore both h(1’2) are singular at p = 0 with power p~t~!

The combination j;(p) = (h, m 4 h )/2 is regular at p = 0. This can be
seen easily as follows. Because hl( ) is an integral from t = —1 to ioco, while
hl(l) from t = +1 to ioco, the differencd between the two corresponds to an
integral from t = —1 to t = 00 and coming back to t = +1. Because the

integrand does not have a pole, this contour can be deformed to a straight
integral from ¢t = —1 to +1. Therefore,

i) = 3 O [ ey (10)
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In this expresswn p— 0 can be taken without any problems in the 1nte ral
and hence j; o« p', i.e., regular. The other linear combination n; =
h{?/2i is of course singular at p = O. Note that

1 . .
hi"(p) = julp) + imi(p) (11)
is analogous to
" = cos p + isin p. (12)
It is useful to see some examples for low .
. sin . sin cos . —p% .
Jo="08 1= =k Jo =24 sinp — % cosp,
n():_wa nlz_%_Sian Nng = 32 Sinp7
P, P LN L 13
B = * T B A S
2) o 2 . i\ g 2 . (3—p2? i\ ,—i
R BT R B

2 Power Series Expansion

Eq. can be used to obtain the power series expansion. We first split the
integration region into two parts,

0= [y 2 [ [

(14)
The first term can be expanded in a power series by a change of variable,
=it/p,

)L 2\"id
the first term = _(p/ ) / e’ <1+ 72> T
0 p*) p

I! 2

1 e
= —ZW/ e (72+p2)ld7—

—T 2n,__2l—2n
= 5121 l+1/ Z Cnp™T dr

n=I

— 2n
— [lQl T Z 'p 2l —2n+1)

!Note that my notation for n; differs from Sakurai’s by a sign as seen in Eq. (7.6.52)

on page 409. I'm sorry for that, but I stick with my convention, which was taken from
Messiah.



(20 — 2n) o

- 21 I+1 Z (I — n) (15)
On the other hand, the second term can be expanded as
AL
the second term = ('Z/R/ e’pt(l —t)dt
0

2 "

_ p/2 an/ P (1 — £2)ldt

_ p/2 Zn”' / (=121 );dx
) & T+ I+
. 2%)20”'[) s LG R

At this point, it is useful to separate the sum to even n = 2k and odd
n=2%k+1,

the second term

L\ (D TR+ 3) — ] I'(k+1)
B 2(2) (kz:% @) T(k+1+3) Z 2k+1 F(k:+l+2))

P (& (D, TR+ ) = i(—l)”C oot k!
- 21“(1;) 2k " F(k+l+§)+k§mp (k;+l+1)'>

(17)
Because h(l)( ) = jl(p) +iny(p ) we find
EOT(k ,
1 (2l —2n)! (=1)"&! 2%-+1
mip) = —3 l+1n§::ln'(l )’ 2l+1,§(2k+1)!(k+1+1)!p :
(19)

The expression for j; can be simplified using the identity I'(n + %) =
2n—1)!!
(n=3)n -3+ 30 = 227

N G VA ¢ R YLV TP
jl(ﬂ) = 2”1];) ( k) (2]€+2l—|—1)”\/_/2k+l+1p
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& (DF 1 2h
Pk @kt 2+ )2k 20— 1) (2k+ 1)

(DR 2k 20)(2k + 20— 2) -+ (2K + 2)(2k)! 4,
— P4k 2k + 20+ 1) P

o0

S (DR D!,
- pkz::ok;'(%JranLl)!p

< (—1)Ek+ D),
B (Qp)lkz:%k!((Qllc)Jr(zltr)l)!pk' 20)

To write out the first three terms,

l 2 4
LA R A P — @)
@+ 00| T 2@ 1) TR@IT 5@ 1)

It suggests that the leading term is a good approximation when p < 2['/2.
Similarly, the expression for n;(p) can also be simplified,

n(p) = 20l nzl:l EIQ'Z l_—z;l)!!pm 201 Z (2k + i) (/zkfl +1)! -
B 21p11+1 (; S’Ll(l —QZ;:p 1 i < (2k+1 (;(likfl + 1)!92k+2l+2>
- g (S S} £ =)
- _2’p11+1 (n; 51!([ _22))"/)2”“;1 ;inilg);z'l) ”%)

(22)

To write out the first three terms,

(20 — 1! 0> ot
T ll o) T R@— @i —3) +] CY

It suggests that the leading term is a good approximation when p < 20'/2.



3 Asymptotic Behavior

Eqgs. @) give the asymptotic behaviors of hl(l) for p — oc:

ip i(p—Ir/2)
hY Sy =
P p

By taking linear combinations, we also find

_ sin(p — I /2)
Jo~ )
P
— /2
el inf2)
p

These expressions are good approximations when p > [2.

(24)

(25)
(26)

As seen in the

next section, there are better approximations when p > [ > 1.

4 Large [ Behavior

Starting from the integral from Eq. , we use the steepest descent method

to find the large [ behavior. Changing the variable t = [T,

19 = 028 e

ldr

2 I Ja
_ }(p/2)l /l/l el(log(17l272)+ipf)ld7'
o2 —1/1
1(p/2)t i/t 20(1 — /17 — p?
- (p/l)/ exp[—H—\/ZQ—pQ—l—llog ( 5 P)
2 1 —1/1 P
102 /T2 — o2 I — JZ =2\
TR (TR
2(l =1 = p?) lp

12

2

0
22nl lle™! p

l
_ L e (=Bt (L= vE—p? 1/2.
2p p VIZ—p?

This expression works very well as long as [ > 1 and p < [.

L (p/2) o <2l(z - \/m)>l <2Wl(l _;/\/E)>1/21
P*VI2 = p?

(27)



Starting from the integral from Eq. , we use the steepest descent
method to find the large [ behavior. Change the variable ¢t = il7,

2l 100 |

S(p/2)! e (1 + VI = p?
VPP o [+ 12— p?
2+ VE=2) Iy

) +O(AT)?

72\ ! 72\ /2
iV (VI (V7 (28)
p PPV —p?
Note that there are actually two saddle points,
+JE_ 2
S u (29)

lp

In the above calculation, we picked the saddle point with the negative sign
with the steepest descent, while the other saddle point is what we picked for
Ji(p). Therefore,

l
nz(ﬂ):_le*\/m <l+vl2_P2> <l+vl2_92)1/2,
p p VI —p?

This expression again works very well as long as [ > 1 and p < (but not
too close).

On the other hand, for p > [ > 1, the saddle points above become
complex. The contribution to the hl(l)(p) is given by the saddle point 7 =

l—iy/p2—12

lp

(30)

, and hence

p p ivp* =12 (31)

This works very well as long as > 1 and p > [ (but not too close). j; (n;)

. l . 1/2
i = LT (1Y (L ey

is given by the real (imaginary) part of hl(l)(p). In practice, this form works
remarkably well even for [ = 1.
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Figure 1: Comparison of the large p behavior and the large [ behavior of j;(p)
to the exact result. The large [ behavior is a very good approximation for
p > 105 > 100 = [, while the large p behavior is still a poor approximation
unless p > O(I?).

It is interesting to note that this asymptotic behavior of hl(l)(p) is what
you expect from the semi-classical approximation for the free-particle wave
function. The classical action for a free particle is

r 12 kr —1
S(r)y=nh i \/ﬁ dr' = hy/(kr)? — 12 — 2l arctan \/; (32)

and hence l
g 2 _ 72
IS/ in/ ()2 (l i/ (kr)? =1 ) 7 (33)

kr
which agrees with the large [ behavior above except for the last factor which
comes from the lowest-order quantum correction.
When p >~ [ > 1, two saddle points collide and I don’t know what to do.
5 Recursion Formulae

Starting from Eq. 7 we take the derivative

d l )b pice
7hl(1) _ 7hl(1) i (p/ ) / ezptit(l . tQ)Zdt. (34)
dp P I Ja
The second term can be integrated by parts, and gives
Loy e (p/2)" i ipt o+l g Lo () (1)
= i+ 5 /He (=) ta = o —nl (3)



In fact, other functions j;, n;, and hl(2) all satisfy the same relation which can
be easily checked. Referring to all of them generically as z(p), we find the
recursion formula

l
2= —2; — 2141 36
=5 11 (36)

Because z(p) satisfies the differential equation Eq. , we can combine it
with the above recursion relation and find

2 2d 1(1+1)

0 = ([—+-—— 1

(dp2+pdp p? )
2143

= Z] — Zl+1 + Zl+2- (37)

Relabeling [ to [ — 1, we obtain
2041

Zi-1 + Zi41 =

Finally, combining the two recursion relations, we also obtain

[+1

/
g = Rl-1—

6 Plane Wave Expansion

The non-trivial looking formula we used in the class

e =3 (21 + 1)i' jy(kr) Py(cos ) (40)
1=0
can be obtained quite easily from the integral representation Eq. (10). The
point is that one can keep integrating it in parts. By integrating e factor
and differentiating (1 — ¢2)! factor, the boundary terms at ¢t = 41 always
vanish up to [-th time because of the (1 — ¢2?)! factor. Therefore,

Ji= ;(pf) /_11 (illoyeipt (—jt) (1—¢*)dt. (41)

Note that the definition of the Legendre polynomials is

11d
B(t) = gﬁ@(ﬂ -1 (42)
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Using this definition, the spherical Bessel function can be written as
11 st .

— PEP(t)dt. 43

Tl ()

Then we use the fact that the Legendre polynomials form a complete set of

orthogonal polynomials in the interval ¢ € [—1, 1]. Noting the normalization

Ji =

1 2
PO Pyt = 5= b, (44)
the orthonormal basis is P, (t) \/m, and hence
> 2 b ) = ot~ 1), 15)
n=0
By multipyling Eq. (43)) by P(¢')(2] + 1)/2 and summing over n,
222 2l+1 il / & 2l+1 DR = . 5)

By setting p = kr and ¢’ = cosf, we prove Eq. (40)).
If the wave vector is pointing at other directions than the positive z-
axis, the formula Eq. (40) needs to be generalized. Noting Y,°(0,¢) =

(20 +1)/47 P/(cos ), we find

= 4#22]; (kr) Z Y™ (0, 02)Y," (07, 0z) (47)

m=—1

7 Delta-Function Normalization

An important consequence of the identity Eq. is the innerproduct of two
spherical Bessel functions. We start with

/ dieFTe®% — (2035(F — ). (48)
Using Eq. in the Lh.s of this equation, we find
- (47)? / dQdrr?Y,™ () Y™ () Yo () Y ()i (k) ju (K'r)

= SRR [ k)K" ()Y (). (49)
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On the other hand, the r.h.s. of Eq. is

@@%@-E@::(%P;&k—ywmg—mﬁ

1
_ 3 ot o Y
= (@) 0k —K)30 - 0)5(0— &), (50)
Comparing Eq. and and noting
D Y)Y Q) = 6(Q7 — ), (51)
lym
we find ~ .
| i) ik'n) = 52580k = ). (52)
0 2k?

8 Mathematica

In Mathematica, spherical Bessel functions are not defined but the usual
Bessel functions are. The j;(z) is obtained by

,/WB 1J[1+1 ]
—besse —.,Z
2z 2’
B 1\{[1+1 ]
—besse —.,2Z|.
2z 2’

You may actually want to use

and n;(z) by

™ 1
PowerExpand|,/ Q—BesselJ[l + 5 z||
z

etc to get rid of half-odd powers.
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