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1. np? states

The purpose of this problem is to understand quantiatively the impact of the Coulomb repulsion among electrons in multi-elec-
tron atoms and the Hund's rule that picked a particular 25*! L; state as the ground state. We are not concerned with the
spin-orbit interactions here. The n p? configuration allows us to deal with the Coulomb repulsion as if we are dealing with
only two electrons (namely we assume that the closed shell is very rigid), and we can work out the energy splittings among
1'S, 1 D, 3 P states explicitly. Even though the radial integrals depend explicitly on the radial wave function and hence on
details that rely on something like Hartree-Fock, the ratio of the energy splittings is determined purely based on Clebsch-Gor-
dan coefficients thanks to the power of spherical symmetry of the problem. At the same time, the comparison to data pro-
vides useful cross checks and shows the limitation of the anlaylsis.

(a) Calculation of the Coulomb repulsion

We evaluate the Coulomb repulsion for three angular momentum states.
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= The states

The two-body wave function of electrons in the n p? configuration is given by either

symmetric (7 anti—symmetric

orbital ( 1 xz) spin (m.\‘l > M,
or

anti—symmetric (7 symmetric

orbital ( 1 xz) spin (m.\‘l > My,

The spin part is simple because the only anti-symmetric wave function is
1 1 -1 -1 1
U155
for § = 0, while there are three possible symmetric wave functions
|44 Ll —_1>+|—_1L L =t
2° 2/ 7 V272 202/ 17772
for § = 1. For the evaluation of the Coulomb repulsion between two electrons, the spins play no role except for dictating the
symmetry or anti-symmetry of the orbital wave function.

Because both electrons occupy the same orbital, the radial wave function is the product of the same function for two electron
positions. The only non-trivial part is the spherical harmonics so that a specific total L is chosen. The form is

Yorbiut (¥1, X2) = (1) R(2) 3,y Y™ Q) Y7 (Q) (L Lmy my | LML)

The total orbital angular momentum is then specified, L and M, . The expression is summed over m; and m,, but it is actually
only one sum because M; = m; + m,. But it doesn't hurt to keep both of them because wrong combinations automatically
give zero contributions. The important point is that the orbital wave function is either symmetric or anti-symmetric automati-
cally due to the symmetry property of the Clebsch-Gordan coefficients. As I mentioned in class, when you add the same
integer angular momenta, / and [ in our case, an even total angular momentum (L even) gives a symmetric wave function,
while an odd total angular momentum (L odd) gives an anti-symmetric one. I don't find this statement in Sakurai, but can be
found in many other places. For example at MathWorld, http://mathworld.wolfram.com/Clebsch-GordanCoefficient.html,
Eq. (10) makes it clear. Therefore, once the wave function is expressed as a summation over m; and m, as above, the
(anti-)symmetry is already taken care of. This is a special simplification when we add the same [/, and doesn't apply when
two electrons are in different orbitals.

Explicitly, the ' D state |L =2, M; =2, S =0, Ms = 0) is very simple because there is only one term in the orbital wave
function,

Y(x1, x2) = RODR) Q) Y () 5 (15, 5= 5 5

Note the symmetry in the orbital wave function.

The 1 § state is more complicated because it involves three terms
Y(x1, X2) = REDR0) = (V1 (Q) Y7 () = YY) V) (@) + Y71 (@) ¥ (@2))

i -1 1
\/—5(|7, T>_|T’7

The3Pstate |[L=1,M; =0,S=1, Mg = 1) as an example is
Y(x1, x2) = RODR() <5 Q) YT (@) = Y1 @) V(@) | 5. 5
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= working it out

The Coulomb potential is expanded in the spherical harmonics in the usual way,
&2 r<’1 *
el ZM o 2‘% Vi) Y Q).

2

Here, I avoided to use ', m' because they are hard to distinguish, and instead used A, p.

Putting everything together, the expectation value is
2 d d ¥ ¥ 2
(n PZ, LML | reT | n PZ, LML> = fd X1 fd X2 WSpin WOrbital = ‘ﬁorbital WSpin

2

The spin part of the wave function gives just its normalization, namely 1. Now writing it out explicitly,

[ [ah(rooren Y, ¥ @)Y @) im' w1 L)
m'y ,m'y

r<’1 * m m
(2 20, 7wy V@) Y Q) R RO K, ¥ () Y™ () U Lmy my | LMy)
Note that in the "bra" or complex-conjugated wave function, the summation is taken over m'; and m',to be distinguished
from the summation over m;and m, in the "ket". This is very important.

Now we switch to the spherical coordinates and use the identity Eq. (3.7.73) in Sakurai,

Jaayp vt v =\ FEEEEE (1 500110 ) b my my | Im),

We also use the fact that the Clebsch-Gordan coefficients are all real. We obtain
62
(np?, LM, | = |np*, LM,)

ezr/{ ' '
=ZM o rdr [t dr S S R R (m'ym'y LMY (U my my | LML)
SUI M Iy >

N EE (TA00[10 ) (I Am'y | Imy) ) S22 (IA00 110 Y (I Am'y | Imy)
The radial integral depends only on A, and we call it
A 2 2 P rt 2 2
F\np,np)= [r?dr [r?dr, <5 R0m)* R()
Then the result is
62
(np?, LMy | = |np? LM,)

=Zl Frnp,np) ). o my ms [LMY (I Tmy my | LMY AA00110 Y Am'y | Imy) (I my gt Im's)
M.my my m'y m'y

The summation is over u, m;, my, m'y, m',, but there are relations M, =m; +my =m'y + m'y, u =m; —m'y =m', —m, and
there is actually only one summation, while there is an overall summation over A. But it doesn't hurt to sum over all of them
because the wrong combinations automatically give zero.

The general expression would be

Sum[ClebschGordan[{l, m';}, {1, m';}, {L, M.}]
ClebschGordan[{l, m;}, {1, m;}, {L, M,}] ClebschGordan[{1, 0}, {A, 0}, {1, 0}]2
ClebschGordan[{1l, m';}, {A, u}, {1, m;y}] ClebschGordan[{1l, m;}, {A, u}, {1, m';}],
{mll _ll l}l {mZI _ll l]’l {m|1, _ll l]’l {m|21 _ll l]’l {UI _A'I -A]']

If you substitute M; = 0 etc into the above expression, Mathematica complains. You have to write "0" in there explicitly. 1
also take the sum over all of the variables, and most of them are unphysical because they don't satisfy the requirements like
my +my =m3. Mathematica returns zero in such cases and there is no harm to sum over all of them, together with generous
warning signs you are forced to stare at.
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= apply it to our problem

From the spherical symmetry of the problem, the result should be independent of the choice of M;. We take M; =0 for the
purpose of actual evaluations. Because we have [ =1, it is

Sum[ClebschGordan[{l, m';}, {1, m',;}, {L, 0}]
ClebschGordan[{l1, m;}, {1, m;}, {L, 0}] ClebschGordan[{1l, 0}, {A, O}, {1, 0}]2
ClebschGordan[{1l, m';}, {A, u}, {1, my}] ClebschGordan[{1, m;}, {A, u}, {1, m';}],
{mll _ll 1]’! {mZI _ll l}l {m|1, _ll l}l {m|21 _ll l}l {UI _A'I -A]']

m! S
The coefficient of F° is

Sum[ClebschGordan[{1l, m';}, {1, m',}, {0, 0}]
ClebschGordan[{l1, m;}, {1, m;}, {0, 0}] ClebschGordan[{1l, 0}, {O, O}, {1, 0}]2
ClebschGordan[{1, m';}, {0, u}, {1, m;}] ClebschGordan[{1, m;}, {0, u}, {1, m';}],
{mll _ll 1]’! {mZI _ll l}l {m|1, _ll l}l {m|21 _ll l}l {UI ol 0]’]

ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {0, 0}] is not physical. MoOre...

ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {0, 0}] is not physical. More...

ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, 0}, {0, 0}] is not physical. More...

General ::stop : Further output of ClebschGordan::phy will be suppressed during this calculation. MOre..

1

and the coefficient of F? is

Sum[ClebschGordan[{1l, m';}, {1, m',}, {0, 0}]
ClebschGordan[{l1, m;}, {1, m;}, {0, 0}] ClebschGordan[{1l, 0}, {2, O}, {1, 0}]2
ClebschGordan[{1, m';}, {2, u}, {1, m;}] ClebschGordan[{1, m;}, {2, u}, {1, m';}],
{mll _ll 1]’! {mZI _ll l}l {m|1, _ll l}l {m|21 _ll l}l {UI '21 2]’]

ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {0, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {0, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {2, -2}, {1, 1}] is not physical. MoOre...
General ::stop : Further output of ClebschGordan::phy will be suppressed during this calculation. MOre..

2

5
"BY))

The coefficient of F0is
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Sum[ClebschGordan[{1l, m';}, {1, m';}, {2, 0}]
ClebschGordan[{l1, m;}, {1, m;}, {2, 0}] ClebschGordan[{1l, 0}, {O, O}, {1, 0}]2
ClebschGordan[{1l, m';}, {0, u}, {1, m;}] ClebschGordan[{1l, m;}, {O, u}, {1, m',}],
{mll _ll 1]’! {mZI _ll l}l {m|1, _ll l}l {m|21 _ll l}l {UI _ol 0]’]

ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {2, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {2, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, 0}, {2, 0}] is not physical. More...

General ::stop : Further output of ClebschGordan::phy will be suppressed during this calculation. MOre..

1

and the coefficient of FZis

Sum[ClebschGordan[{1l, m';}, {1, m';}, {2, 0}]
ClebschGordan[{l1, m;}, {1, m;}, {2, 0}] ClebschGordan[{1l, 0}, {2, O}, {1, 0}]2
ClebschGordan[{1, m';}, {2, u}, {1, m;}] ClebschGordan[{1, m;}, {2, u}, {1, m';}],
{mll _ll 1]’! {mZI _ll l}l {m|1, _ll l}l {m|21 _ll l}l {UI '21 2]’]

ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {2, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {2, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {2, -2}, {1, 1}] is not physical. MoOre...

General ::stop : Further output of ClebschGordan::phy will be suppressed during this calculation. MOre..
1
25
ndp

The coefficient of FOis

Sum[ClebschGordan[{1l, m';}, {1, m';}, {1, 0}]
ClebschGordan[{l1, m;}, {1, m;}, {1, 0}] ClebschGordan[{1l, 0}, {O, O}, {1, 0}]2
ClebschGordan[{1, m';}, {0, u}, {1, m;}] ClebschGordan[{1, m;}, {0, u}, {1, m';}],
{mll _ll 1]’! {mZI _ll l}l {m|1, _ll l}l {m|21 _ll l}l {UI _ol 0]’]

ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {1, 0}] is not physical. More...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {1, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, 0}, {1, 0}] is not physical. More...

General ::stop : Further output of ClebschGordan::phy will be suppressed during this calculation. MOre..

1

and the coefficient of FZis
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Sum[ClebschGordan[{1l, m';}, {1, m';}, {1, 0}]
ClebschGordan[{l1, m;}, {1, m;}, {1, 0}] ClebschGordan[{1l, 0}, {2, 0}, {1, 0}]2
ClebschGordan[{1l, m';}, {2, u}, {1, m;}] ClebschGordan[{1, m;}, {2, u}, {1, m';}],
{mll _ll 1]’! {mZI _ll l}l {m|1, _ll l}l {m|21 _ll l}l {UI '21 2]’]

ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {1, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {1, -1}, {1, 0}] is not physical. MoOre...
ClebschGordan : :phy : ThreeJSymbol [{1, -1}, {2, -2}, {1, 1}] is not physical. MoOre...
General ::stop : Further output of ClebschGordan::phy will be suppressed during this calculation. MOre..

L
5

m Putting together

Putting them together, we find

(npz,lS %|npz,1S>=F0+%F2
62

(npz,lD E|npz,1D>=F0+%F2

(np2,3P %|npz,3P>=F0—%F2

= side note

Just in case you are dismayed by the complicated combination of Clebsch-Gordan coefficients above, it can be recast to a
more compact form using Wigner's 3j- and 6j-symbols. Messiah has a good compilation of useful formulae. For our prob-
lem,

2
A asel g\ N L 2l L AN L1 L
< |nP, L>_§AF(nl,nl)( D e+ (g0 o) 4 1)

This fact also makes it clear why the result doesn't depend on M .

(n 12 , 28+1 L

Matt Cargo lectured on the spin network which gives this expression by inspection *right away*. Ask him for references.

The expression can be evaluated readily by Mathematica
(-1)* (21 +1)2 ThreeJSymbol[{1, 0}, {1, 0}, {1, 0}]1% SixJSymbol[{1, 1, L}, {1, 1, A}]
(-1)° (2%1+1)? ThreeJSymbol[{1, 0}, {1, 0}, {0, 0}]% SixJSymbol[{1l, 1, 0}, {1, 1, 0}]
1

(-1)° (2%1+1)? ThreeJSymbol[{1, 0}, {1, 0}, {2, 0}]% sixdSymbol[{1l, 1, 0}, {1, 1, 2}]

2

5
(-1)%2 (2% 1+ 1)? ThreeJSymbol[{1, 0}, {1, 0}, {0, 0}]% SixJSymbol[{1l, 1, 2}, {1, 1, 0}]

1
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(-1)%2 (2% 1+ 1)? ThreeJSymbol[{1, 0}, {1, 0}, {2, 0}]% sixJdSymbol[{1, 1, 2}, {1, 1, 2}]
1
25
(-1)' (2%1+1)? ThreeJSymbol[{1, 0}, {1, 0}, {0, 0}]% SixJSymbol[{1l, 1, 1}, {1, 1, 0}]

1

(-1)' (2%1+1)? ThreeJSymbol[{1, 0}, {1, 0}, {2, 0}]% sixJSymbol[{1l, 1, 1}, {1, 1, 2}]

1

5

(b) comparison to data

= Group IV

In this group, there are two electrons in a p orbital. We take the average of levels split by the spin-orbit coupling weighted
by the number of states 2J + 1. The predicted ratio of energy splittings is

2 1
's-'D _ $-3% _ 3
DP T Lyl T2

On the other hand, the data says

C: 1.13
Si: 1.48
Ge: 1.50
Sn: 1.39
Pb: 1.62

The data agree very well with the prediction for Si and Ge. It fails for Sn and Pb, namely for very large atoms, because the
spin-orbit coupling becomes important as o (Z @)*so that the single-particle wave function is no longer described well by
separate / and s quantum numbers. Therefore the LS coupling scheme ceases to be a good approximation. On the other
hand, the prediction fails for C, too. This is because two electrons we consider have a large enough impact on the remaining
four electrons. Even though the four electrons form a closed shell, it is so small that it gets disturbed by the high cost of
excitation due to the two outer-shell electrons. Formally this effect is at the second-order in perturbation theory while we
considered only the first-order effect (namely just the expectation values).
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= Group VI

In this group, there are two holes in a p orbital. The data says

O: 1.14
S: 1.43
Se: 1.49
Te: 1.49
Po: no data

Again the agreement is very good for the intermediate size atoms, while it fails for the smallest one, O. The reason is
expected to be the same as the Group I'V.

m What the pros do

It is instructive to look at theretical predictions (postdictions) by pros who use multi-configuration Hartree-Fock. Such
calculations can deal with both the impact of outer shell electrons on the closed shells and/or large relativistic effects for
large Z. 1 copy results by Charlotte Froese Fischer and co. from http://atoms.vuse.vanderbilt.edu/. For C, where the impact
of the two 2 p electrons on the inner shell appear important, the comparison to the data is

level data MCHF
3P 0 0

3p 16.41671 16.33
3p, 43.41350 43.03
'D, 10192.66 10268.23
Y 21648.02 21818.60
Impressive.

2. Thomas-Fermi energy levels

The purpose of this problem is to understand qualitatively the single-particle energy levels in multi-electron atoms. Due to
the screening of the nuclear charge by the inner-shell electrons, the degeneracy among the orbitals of the same principal
quantum number n is lifted. This explains the empirical fact of the "Aufbau principle", namely how to build atoms filling the
orbitals in the order of 15,25,2 p,35,3 p,45,3d,4p,5s,4d,5f,5p,6s,etc

For a useful comparison, the excited levels of Al provides the energy levels above 3 p, as single-electron levels in the poten-
tial provided by the 15?2 s 2 p% 3 5? closed shell.

Thomas-Fermi for Al*

I have given the following note to you, and you didn't have to work this out.

Following the discusions on the positive ions in the lecture notes, we need to find y'(0) so that
Xo x¥' (x0)=—(Z-N)/Z =-1/13 for Al*. After some trial-and-error, I find y'(0) = —1.5881063075 works:
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chisol = NDSolve[
4 x 4 3/2
{(1 + — x3/2) y''[x]+4x"?y'[x] +If[x==0,0, yixl (1 - (1 + — x3/2) Max[y[x], 0]"?*|] ==
3 x1/2 3

0, y[0] ==1, y'[0] == -1.5881063075}, y, {x, 0, 300}];
x[x_] := (1+4/3%x*?) y[x]; Plot[x[x] /. chisol, {x, 0, 300}]

- Graphics -

Plot[x[x] /. chisol, {x, 0, 30}]

- Graphics -
Look for where y(xq) =0,

Xo = x /. FindRoot[x[x] /. chisol, {x, 0, 100}]

12.7649

Now make sure xy y'(x0) =—1/Z,
Zxx'[x]/.chisol /. {x->%¢} /. {Z > 13}
{-1.}

Using the definition e ®(r) = zZe x(r) and variables r= Z""3 bx, b= % (%)2/3

. we define (in the atomic unit
e=m=h=1)

me?
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z 1 (3m\2 7 1 (3723
[r ] :=-—x[|27Y® — (—) r| /. {ry > 23 — (—) Xo} /. chisol[[1]] /. {2 > 13
[r_] r[( > |32 ]7- {xo > | o} [r211 /.4 }
Plot[r &[r], {r, 0, 20}]
2.5
5 10 15 20
-2.5
-5
-7.5
-10
-12.5
- Graphics -
. . . _62 _1/3 _1/3 1 3 2/3 . . .
The Fermi energy is just e = T,Where ro=2 bxy=2Z 7 () X in the atomic unit.
o[r_] :=
z 1 (377 1 1 (37?3
-— x Z‘”3—(—) r|l- — /. {r —>Z‘1/3—(—] Xo} /. chisol[[1]] /. {2 > 13
r[( 5 |2 ]ro {xo 5> |2 o} [r211 /.4 }

1 3 2/3

z13 — (—) Xo /. {Z - 13}
2 \ 4

4.80635

Plot[r¢[r], {r, 0, 10}]

-0.999985
-0.99999
-0.999995

-1

-1.00001

-1.00002

- Graphics -

2 .. . .
Indeed, ¢(r) becomes (—1) 67 due to the overall positive charge beyond r > ry where the electron number density vanishes.
The coefficient is consistent with —1 within the tiny numerical errors. To make this point clear, let us plot it on bigger scales,



midterm.nb 11

Plot[r ¢[r], {r, O, 10}, PlotRange » {-14, 0}, PlotStyle » RGBColor[0O, 1, 0]]

2 4 6 8 10

-10

-12

-14
- Graphics -

r ¢(r) basically is the total charge contained in the radius r. At the origin, it is 13. Away from the origin, it asymptotes to 1,
which is the charge of Al*.

Therefore, for orbitals close to the origin (like 1), we expect it the energy is close to the hydrogenic spectrum with Z = 13,
while for high orbitals far away from the origin (like 5 g), the energy is close to that with Z = 1. This qualitative understand-
ing helps to start guessing the energy eigenvalues.

1=0

= no nodes (1s)

With no nodes (ground state). For the hydrogen-like spectrum, we expect & = —13% = —169.

sol = NDSolve[
2 (1+1) -13

p'lr]-2¢[r]lplr]] =ep[r], p[0] =1, p'[0] = ——} /.

{-p''[r]1-1£f[r==0,0, 1+1

{1-0}/. {€>-103.77652277489802}, p, {r, O, 5}];
Plot[Evaluate[p[r] /. sol], {r, O, 5}, PlotRange -» {-1, 1}]

1

0.75

- Graphics -
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12

= one node (2s)

Now for the higher levels.

sol = NDSolve [

2 (1+1)

{-p''[r]1-1£[r==0, 0, p'I¥] -2¢lr]plr]] =eplr], p[0] =1, p'[0] =

{1-0}/. {¢>»>-7.377516185}, p, {r, O, 10}];
Plot[Evaluate[p[r] /. sol], {r, O, 10}, PlotRange » {-0.2, 0.2}]

- Graphics -

= two nodes (3s)

sol = NDSolve [

2 (1+1)

{-p""[r1-1£[r==0, 0, p'[r] -2¢[r] plr]] = eplr]l, p[0] =1, p' [0] =

{1-0}/. {¢ >-0.55563}, p, {r, O, 20}];
Plot[Evaluate[p[r] /. sol], {r, O, 20}, PlotRange » {-0.2, 0.2}]

0.05 /\

- Graphics -

-13
l+1}/'

-13
l+1}/'
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13

= three nodes (4s)

sol = NDSolve [

2 (1+1)

{-p""Ir1-1£[r==0, 0, p'[r] -2¢[r] plr]] = eplr]l, p[0] =1, p' [0] =

{150} /. {e>-0.1746}, p, {r, 0, 30}];
Plot[Evaluate[p[r] /. sol], {r, O, 30}, PlotRange » {-0.1, 0.1}]
0.1
0.075
0.05
0.025

-0.025
-0.05
-0.075

0.1l

- Graphics -

= four nodes (5s)

sol = NDSolve [

2 (1+1)

{-p""Ir1-1£[r==0, 0, p'[r] -2¢[r] plr]] = eplr]l, p[0] =1, p' [0] =

{1-0}/. {€¢>-0.086365843}, p, {r, O, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.03, 0.03}]

0.03

0.02

0.01 N

20 40 60 80 100

-0.01

-0.02

-0.03

- Graphics -

-13

1+1

-13

1+1

} /.

} /.
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= five nodes (6s)

sol = NDSolve [

2 (1+1) -13
{-p''[r1-1£[r==0,0, ———p'[r]-2¢[r]lplr]] = eplr], p[0] =1, p'[0] = —} /.
+
{150} /. {€>-0.0515225}, p, {r, O, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.02, 0.02}]
0.02
0.015
0.01
0.005
2 40 6‘0 80 100
-0.005
-0.01
-0.015
-0.02
- Graphics -
I=1
= no nodes (2p)
With no nodes (ground state), we expect &€ = # =—42.25.
sol = NDSolve [
2 (1+1) -13
{-p"'[r]1-1£[r==0,0, ———p'[r]-2¢[r]p[r]] =ep[r], p[0] =1, p'[0] = —} /.

{1-1} /. {e »-4.6442405}, p, {r, O, 10}];
Plot[Evaluate[p[r] /. sol], {r, O, 10}, PlotRange » {-0.01, 0.1}]

2 4 6 8 10

- Graphics -
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= one node (3p)

-1

Now for the higher levels. With one node, we expect € = 5 s

sol = NDSolve [

2 (1+1) -13
{-p''[r1-1£[r==0,0, ———p'[r]-2¢[r]lplr]] = eplr]l, p[0] =1, p'[0] = ——} /.
+
{11} /. {e~>-0.27415}, p, {r, 0, 30}];
Plot[Evaluate[p[r] /. sol], {r, O, 30}, PlotRange » {-0.015, 0.015}]
0.015
0.01
0.005
10 15 26 25 30
-0.005
-0.01
-0.015
- Graphics -
= two nodes (4p)
sol = NDSolve [
2 (1+1) -13
{-p''[r1-1£[r==0,0, ———p'[r]-2¢[r]lplr]] = eplr], p[0] =1, p'[0] = ——} /.
+

{1-1} /. {e¢>-0.116966184}, p, {r, O, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.015, 0.015}]
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0.005
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-0.005
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- Graphics -
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= three nodes (5p)
With two nodes, we expect € = 5=

sol = NDSolve[
2 (1+1) i
{-p"[x]-1£[r==0, 0, === p'[r] -20[r] plr]] = eplxr], p[0] = 1, p ' [0] = ———} /.
{151} /. (¢ »-0.0648106}, p, {r, 0, 100}];

Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.001, 0.001}]

0.001
0.00075
0.0005
0.00025

20 40 60 80 100
-0.00025
-0.0005

-0.00075

-0.001

- Graphics -

= four nodes (6p)

With two nodes, we expect € = —

sol = NDSolve [
2 (1+1) -13

1+1

{-p''[r]1-1£[r==0, 0, p'I¥]-2¢lr]plr]] =eplr], p[0] =1, p'[0] =

} /.
{1-1}/. {¢ »-0.04115}, p, {r, O, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.0003, 0.001}]
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0.0008
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0.0002

\¥59/ 40 60 80 100
~0.0002

- Graphics -
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1=2

= no nodes (3d)

With no nodes (ground state), we expect € = % =—-18.78

sol = NDSolve [

2 (1+1) -13
{-p"'[r]1-1£[r==0,0, ———p'[r]-2¢[r]p[r]] = ep[r], p[0] =1, p'[0] = —} /.
{1>2}/.{e~»-0.112526525}, p, {r, 0, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.001, 0.01}]
0.01
0.008
0.006
0.004
0.002
20 46 66 86 4+160
- Graphics -
= one node (4d)
sol = NDSolve [
2 (1+1) -13
{-p''[r1-1£[r==0,0, ———p'[r]-2¢[r]lplr]] = eplr], p[0] =1, p'[0] = ——} /.
+

{1-2}/. {¢>-0.0633465}, p, {r, O, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.0004, 0.0003}]

0.0002

0.0001

-0.0001

-0.0002

-0.0003

-0.0004

- Graphics -
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= two nodes (5d)

=3

= no nodes (4f)

sol = NDSolve [

2 (1+1) -13
— p ' [r] -2¢[r]p[r]] =ep[r], p[0] =1, p'[0] == 1.1

{-p' '[r] —If[r ==0, 0,

} /.

{153} /. {e~»-0.062517}, p, {r, O, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.001, 0.01}]
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0.008
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0.002

20 40 60 80 100

- Graphics -
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= one node (5f)

sol = NDSolve [
2 (1+1) -13

1+1

{-p''[r]1-1£[r==0, 0, p'I¥]-2¢lr]plr]] =eplr], p[0] =1, p'[0] =

} /.
{1-3}/. {e »-0.04002}, p, {r, O, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.0003, 0.0003}]

0.0002

0.0001

2 40 60 80 100
-0.0001

-0.0002

- Graphics -

1=4

= no nodes (59)

sol = NDSolve [
2 (1+1) -13

1+1 } /-

{-p''[r]1-1£[r==0, 0, p'I¥]-2¢lr]plr]] =eplr], p[0] =1, p'[0] =

{1-4} /. {¢ »-0.04002}, p, {r, O, 100}];
Plot[Evaluate[p[r] /. sol], {r, O, 100}, PlotRange » {-0.001, 0.01}]
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0.008
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0.002

20 40 60 80 100

- Graphics -
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Coparison to data

Values of € calculated above are 2 E in the atomic unit (Hartree). Dividing them by two:

{-103.77652277489802,
-7.377516185,
-4.6442405,
-0.55563,
-0.27415,
-0.1746,
-0.116966184,
-0.112526525,
-0.086365843,
-0.0648106,
-0.0633465,
-0.062517,
-0.0515225,
-0.04115,
-0.0405,
-0.04002,
-0.04002} /2

{-51.8883, -3.68876, -2.32212, -0.277815, -0.137075,
-0.0873, -0.0584831, -0.0562633, -0.0431829, -0.0324053, -0.0316733,
-0.0312585, -0.0257613, -0.020575, -0.02025, -0.02001, -0.02001}

ordering is

Is  -51.8883
25 -3.68876
2p 232212

3s 0277815
3p  -0.137075
45 -0.0873

4p  -0.0584831
3d -0.0562633
55 -0.0431829
5p -0.0324053
4d  -0.0316733
4f  -0.0312585
6s  -0.0257613
6p  -0.020575

54 -0.02025
5f  -0.02001
5g -0.02001

On the other hand, the data, after taking weighted average over the spin-orbit splittings and converting cm™! to Hartree, is
3p -0.21975

4s -0.10454

3d -0.087443

4p -0.072221

S5s -0.048273
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4d  -0.042608
Sp -0.036482
4f 0031725
6s  -0.027964
4d 0027545
6p  -0.022527
5f -0.020275
5g -0.020071
5 -0.018739

Note that "4d" is repeated twice. This is because 3 s 3 p?(D) configuration gives exactly the same quantum number 2 D as the
3 5% nd configurations, and hence effectively inserts another state into the 3 s> nd sequence. V. Kaufman and W.C. Martin,
J. Phys. Chem. Ref. Data, 20, 775 (1991) decided to use "4d" label twice so that at very high nd they line up well with n f
and n g orbitals. This issue also explains why the n d states show poor agreement beween the calculation and data. Appar-
ently this new state is somewhere between our 3d and 4d. Due to the no-level-crossing theorem, the states repel by mixing,
and the 3 d state is pushed down, while the normal 4 d state is pushed up, and the new "4d" state is inserted between them.
The mixing is less important as you go to higher states indeed, and the 5d state shows reasonable agreement. Nonetheless,
the data shows the 5d state is above 5f and 5g as a consequence of this mixing.

The graphical comparison between this calculation and the data is shown at http://hitoshi.berkeley.edu/221B/Aldata.pdf

Even though the details are different, the Thomas-Fermi calculation shows important qualitative features that are consistent
with data:

(1) higher [ orbitals have higher energies for the same principal quantum number n

(2) 4 p and 3 d are very close

(3)5 p,4d, and 4 f are very close

4)6p,5d,5 f,and 5 g are very close

The quantiative agreement is something like 20% level,which I find remarkble for a crude model as Thomas-Fermi and
Z = 13 which is certainly not very close to infinity.

Ask the Pros

Again consulting http://atoms.vuse.vanderbilt.edu/, here is the comparison in cm™!

configuration state MCHF data
3s*3p? P, 0.0000
2 P3, 90.10 112.061

35745 28, 25582.85 25347.756

353p* 4Py, 28080.16  29020.41
4 Py 2811791 29066.96
* Psj, 28 178.99 29142.78

3523d*Dsp 32184.61 32435.453
2 Dsp 32186.17 32436.796
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3s%4p ? P{, 33047.68 32949.807
2 P55 33060.38 32965.639

The list doesn't go up to as high levels as ours do. But it is impressive.
3. Thomson's Plum Pudding Model

This problem has an obvious historical importance. The Rutherford's experiment discriminated the "Rutherford model of
atoms" against the "Thomson's Plum Pudding Model of atoms." Therefore we need to see what the predicted difference
between two models is for the Rutherford's experiment.

First the Born approximation. Using the form factor defined in the lecture notes (Eq. (16)),

F(g) = % fd;pN(;) ¢'9% . For this problem, pN( )= i o /20’ . Therefore,

52
1 _ 2 2 .a-a
F(q) = 7fdx (2”)3/2 e ¥ 2o ol a%

5 532 52
1 (x—io'2 q) 20%2-02¢q /2
fdx T € / /
o2 *2/2

Using Eqs. (17) and (12), and ¢ = 2k%(1 — cos 6) = 4 k2 sin*(6/2),
do _ QmPZZE) 40 K sin(0)2)

dQ 16 (h k)% sin* (6/2)

(27{0’

Now we can plot both the point-like case and the plum pudding case. We take E = 10 MeV = 1.60 10~ dyn for the a-parti-

cle, and 0=0.528 A. The mass of the a-particle is 4.002602u, where 11 = 1.6605 x 10™2* g. The momentum of the a-parti-
cleis p = V2m, E =1.46x 107 gcm/sec.

\/2 *4.002602+1.6605107* +1.60107°

1.45836x10 %

(2m)2 (z2' e?)?
16 (ak)* sin[e/2]*

1
{k-> 1.4610** /8, 2579, 2' > 2, ea\/m 19710107 1.610*, m->9.11 10‘28}

4

]

<< Graphics~Graphics™

6.03408x10 > Csc|

N|©

Here is the differential cross section by the point-like nucleus as a function of the scattering angle 6,
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e 4
LogPlot[6.034076289556489" *"-33 CSC[;] , {6, 0, 7}]

1.x10°18
1.x10°%
1.x10°%
1.x10°%

1.x107%°

- Graphics -
Here is the form factor

g4’ ¥ sinte/2)® (5 ,0.52810°°%, k->1.46107* /h} /. (A 1.05410%}

@ 2-1397x1010 sin[§]?

Multiplying the form factor on the point-like differential cross section

e.* Can . 2
LogPlot[6.034076289556489" *"-33 CSC[E] g2 1396972386731106° 10 sin[3]7 (g o,

—}]

1.00000000008286 x 10 13391584
9.99999999888689 x 10 29015104
9.99999999990977 x 10 4638623
1.000000000143340 x 1060262141
9.99999999870368 x 10~ /885661

~91509179
1.000000000079019 x10 0 0.05 0.1 0.15 0.2

- Graphics -

Here is the comparison of differential cross sections between the Rutherford's and Thomson's models.
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- Graphics -

Namely, the Gaussian form factor drops off so quickly that there is basically no cross section at all at any large angles, not to
mention backwards (6=r). This comparison makes it clear why people had to abandon Thomson's model after the experi-
ment saw the backward scattered a-particle.



