
221B Lecture Notes
Many-Body Problems IV

Nuclear Physics

1 Nuclei

Nuclei sit at the center of any atoms. Therefore, understanding them is of
central importance to any discussions of microscopic physics. Due to some
reason, however, the nuclear physics had not been taught so much in the
standard physics curriculum. I try to briefly review nuclear physics in a few
lectures. Obviously I can’t go into much details, but hope to give you at
least a rough idea on nuclear physics.

As you know, nuclei are composed of protons and neutrons. The number
of protons is the atomic number Z, and the mass number A is approximately
the total number of nucleons , a collective name for protons and neutrons.
Therefore

A = N + Z (1)

where N is the number of neutrons. We know that nuclei are very small. An
empirical formula for the size of the nuclei, which can be measured using the
form factor in elastic electron-nuclei scattering, is

R = r0A
1/3, r0 = 1.12 fm. (2)

This is a good approximation practically for all nuclei with A >∼ 12. Here,
fm = 10−13cm, or sometimes called also “Fermi” rather than femto-meter,
and the nuclei are smaller by five orders of magnitude than the atoms. What
the formula means is that the nuclear density is more-or-less constant for any
nuclei, ρ = 1.72 × 1038 nucleons/cm3 = 0.172 nucleons/fm3. Of course, the
nuclear density does not drop to zero abruptly. The form factor measurement
is often fitted to the size and the “surface thickness,” within which the density
smoothly falls from the constant to zero. The result is that the surface
thickness is about t ' 2.4 fm.

2 Empirical Mass Formula

Gross properties of nuclei are manifested in the empirical (or Weizsäcker)
mass formula. Recall Einstein’s relation E = mc2, which tells us that the to-
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Figure 1: From “Theoretical Nuclear Physics,” by Amos deShalit and Her-
man Feshbach, New York, Wiley, 1974.
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Figure 2: From “Theoretical Nuclear Physics,” by Amos deShalit and Her-
man Feshbach, New York, Wiley, 1974.
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Figure 3: A more realistic shape of nuclei. From “Subatomic Zoo,” by Hans
Frauenfelder and Ernest M. Henley, Prentice-Hall, Inc., NJ, 1974.
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tal mass of nuclei has information on its composition as well as its interaction
energies. The empirical mass formula is

mnucleus(Z,N) = Zmp +Nmn −
B

c2
, (3)

where the last term is the “mass deficit” due to the binding energy B, and
is given by

B = avA− asA
2/3 − asym

(Z −N)2

A
− aC

Z2

A1/3
+ δ(A). (4)

Among all these terms, the first terms is the most important one, giving
roughly constant binding energy per nucleon. If you neglect all the other
terms, the binding energy is roughly 8.5 MeV/nucleon. But if you fit the
data with all other terms, the number of course comes out differently. We
discuss each of the terms below.

The first term is called the volume term with av = 15.68 MeV, represent-
ing that the total binding energy is roughly proportional to the number of
nucleons. This is the dominant term in the formula. Other terms show the
variation of the binding energy as a function of N and Z. The second term is
called the surface term with as = 18.56 MeV, representing that the binding
energy is lost somehow proportional to the surface area. These two terms
can be qualitatively explained by the so-called liquid drop model of nuclei.
You can view a nucleus as a tightly packed drop of nucleons, each feeling
attractive force from its neighbors. The point is that the force comes basi-
cally only from its neighbors due to the short-ranged nature of the nuclear
force responsible for binding nuclei. Because the number of “neighbors” is
basically the same for any nucleon given the constant nuclear density we’ve
seen above, the amount of binding energy is proportional to the number of
nucleons, giving rise to the volume term. This is said to be “saturation” of
nuclear binding, and the nucleons basically don’t see nucleons beyond their
neighbors. But those at the surface receive less binding because they do not
have about a half of neighbors. The loss of the binding energy is given by
the surface term.

The symmetry term is less obvious. The empirical fact is that stable nuclei
require more-or-less the same number of protons and neutrons, especially true
for light nuclei. Think about common nuclides: 4He, 12C, 14N, 16O, etc, with
high natural abundances. This point will be understood in terms of “Fermi
gas” model of nuclei. By putting in neutrons and protons as free particles
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Figure 4: Nuclear binding energy is more-or-less independent of its size,
roughly about 8.5 MeV/nucleon. The first few peaks are for 4He, 12C, 16O.
The maximum is for 56Fe. From “Theoretical Nuclear Physics,” by Amos
deShalit and Herman Feshbach, New York, Wiley, 1974.
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in a Fermi-degenerate gas, protons and neutrons fill up levels independently,
and it is energetically favorable to keep the Fermi energies for protons and
neutrons the same for a given total number of nucleons (mass number). The
symmetry term, with asym = 28.1 MeV, reflects the rise in the energy when
they are not equal with a parabolic approximation around the minimum
Z = N .

The Coulomb term has the obvious meaning of total Coulomb energy
among protons (neutrons are electrically neutral!). Because the number of
protons is Z, and there is Coulomb potential between any pairs of protons
(long-ranged force unlike the nuclear binding force), the energy goes as Z2.
The typical distance among them is the nuclear size, given by A1/3, hence
the dependence Z2/A1/3, with the coefficient aC = 0.717 MeV. It shows that
the Coulomb interaction is actually a very weak interaction compared to
the nuclear force. Of course, the actual size of the Coulomb energy can be
important especially for large nuclei, because it grows like Z2 (even if you
scale Z and A together, it grows as Z5/3). This tends to prefer smaller Z for
a given A. The competition of the Coulomb term and the symmetry term
gives a preferred fraction of protons for a given A, which becomes smaller and
smaller as A increases, consistent with the observed band of stable isotopes.

Finally the last term is called the pairing term. There is a tendency
that nucleons want to be paired between a given state and its time-reversed
state, i.e., the opposite orbital and spin angular momenta. Because of this
property, even-even nuclei (nuclei with even number of protons and even
number of neutrons) have all 0+ ground state. There is a sizable difference
in the binding energies between nuclei with all nucleons paired (even-even
ones) and those with some nuclei unpaired (even-odd, odd-even, and odd-
odd). The pairing term represents the energy difference among them, given
by

δ(A) =


34A−3/4 MeV for odd-odd nuclei

0 MeV for odd-even nuclei
−34A−3/4 MeV for even-even nuclei

. (5)

Looking at the plot Fig. (4), there are a few anomalously high binding
energies for low A. They are 4He, 12C, 16O. The maximum is for 56Fe. The
presence of a maximum means that any thermonuclear fusion process, such
as stellar burning, cannot produce nuclei beyond iron. We will come back
to the question how different nuclei and hence elements were born in our
Universe later.
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Fig. 5 shows observed nuclides. For small numbers of nucleons, the band
is nearly diagonal, i.e., Z ≈ N . As the size grows, the band bends and is
below the diagonal, Z < N . Using the empirical mass formula, the existence
of the band is easy to understand. As you go away from the band, the
symmetry term becomes important and the mass of the nucleus grows. What
it means it that such a nuclide, if exists, decays immediately by ejecting excess
neutrons or protons until the symmetry term becomes small enough to make
it energetically impossible to eject free neutrons or protons. For large nuclei,
Coulomb term is important and smaller number of protons is preferred. That
is why the band bends downwards. Even within the band, the number of
stable nuclides is not so large. All the colored ones decay either by β-decay
(N,Z) → (N − 1, Z + 1)e−ν̄e or anti-β-decay (N,Z) → (N + 1, Z − 1)e+νe

to approach the narrow band of stability moving along −45◦ line. Unstable
nuclei can also emit an α-particle, a unusually tightly bound 4He nucleus, to
lower the mass number, approaching the maximum binding energy of A = 56.

3 Nuclear Force

Protons and neutrons are bound inside nuclei, despite the Coulomb repulsion
among protons. Therefore there must be a different and much stronger force
acting among nucleons to bind them together. This force is called nuclear
force, nuclear binding force, or in more modern settings, the strong interac-
tion. (Here, we are not talking about a strong interaction. This is the name
of the force.) Here are notable properties of the nuclear binding force.

1. It is much stronger than the electromagnetic force. In the empirical
mass formula, we saw that the coefficient of the Coulomb term is more
than an order of magnitude smaller than the other terms in the binding
energy.

2. It is an attractive force, otherwise nucleons wouldn’t bind.

3. It is short-ranged, acts only up to 1–2 fm.

4. It has the saturation property, giving nearly constant B/A ' 8.5 MeV.
This is in stark contrast to the electromagnetic force. For instance,
the Thomas–Fermi model of atoms gives B = 15.73Z7/3 eV that grows
with a very high power in the number of particles.
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Figure 5: Table of nuclear isotopes, from http://www2.bnl.gov/CoN/. The
horizontal axis is for the number of neutrons N , while the vertical axis the
protons (i.e., atomic number) Z. The black squares represent stable isotopes,
while the others decay either by α- or β-decays to more stable nuclei. Double
lines are for magic numbers.
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5. The force depends on spin and charge states of the nucleon. To under-
stand nuclei and nucleon-nucleon scattering data, we need not only a
potential V (r) between nucleons in the Hamiltonian but also the spin-

spin term ~σ1 · ~σ2V (r), the spin-orbit term (~σ1 + ~σ2) · ~LV (r), and the
tensor term [3(~σ1 · ~r)(~σ2 · ~r)− r2~σ1 · ~σ2]V (r).

6. It can exchange charge. If you do neutron-proton scattering experi-
ment, you not only see a forward peak but also a backward peak. Note
that a forward peak is analogous to a large impact parameter in the
classical mechanics where there is little deflection (recall Rutherford
scattering), and exists for pretty much any scattering processes. But
a backward peak is quite unusual. The interpretation is that when
the proton appears to be backscattered, it is actually a neutron which
converted to a proton because of the nuclear reaction. In other words,
the neutron is scattered to the forward angle, but has converted to
proton by the scattering and we are fooled to see the proton scattered
backward. This is the charge-exchange reaction.

7. Even though the nuclear force is attractive to bind nucleons, there is
a repulsive core when they approach too closely, around 0.5 fm. They
basically cannot go closer.

8. The nuclear force has “charge symmetry,” which means that we can
make an overall switch between protons and neutrons without chang-
ing forces among them. For instance, nn and pp scattering are the
same (except for the obvious difference due to the electric charge). For
example, “mirror nuclei,” which are related by switching protons and
neutrons, have very similar excitation spectra. Examples include 13C
and 13N, 17O and 17F, etc.

9. A stronger version of the charge symmetry is “charge independence.”
Not only nn and pp scattering are the same, but also np scattering is
also the same under the “same configuration” which I specify below
using the concept of isospin.

The last item needs some more explanations. There is a new symmetry
in the nuclear force called isospin, proposed originally by Heisenberg. The
idea is very simple: regard protons and neutrons as identical particles. But of
course, you can’t; they are different particles, right? They even have different
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Figure 6: A recent analysis of nucleon-nucleon scattering data to obtain the
nucleon-nucleon potential. Taken from A. Funk, H. V. von Geramb, K. A.
Amos, nucl-th/0105011.
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Figure 7: Comparison of excitation spectrum of two mirror nuclei, 13C and
13N, 17O and 17F. From “Theoretical Nuclear Physics,” by Amos deShalit
and Herman Feshbach, New York, Wiley, 1974.
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masses! Well, the trick is to introduce a new quantum number, isospin, which
takes values +1/2 and −1/2 just like the ordinary spin. We say a proton
is a nucleon with Iz = +1/2, while a neutron with Iz = −1/2. At this
point, it is just semantics. But the important statement is this: the nuclear
force is invariant under the isospin rotation, just like the Hamiltonian of a
ferromagnet is invariant under the rotation of spin. Then you can classify
states according to the isospin quantum numbers because the nuclear force
preserves isospin. But what about the mass difference, then? The point is
that their masses are actually quite similar: mp = 938.3 MeV/c2 and mn =
939.6 MeV/c2. To the extent that we ignore the small mass difference, we
can treat them identical. Another question is the obvious difference in their
electric charges +|e| and 0. Again, the Coulomb force is not the dominant
force in nuclei, as we have seen in the empirical mass formula. We can
ignore the difference in the electric charge and put it back in as a “small”
perturbation.

The charge symmetry is a limited example of the isospin invariance. It
corresponds to the overall reversal of all isospins. If you reverse all spins sz,
that is basically the 180◦ rotation around the y-axis, and you obtain another
state with degenerate energy. Likewise, if you reverse all isospins, by rotat-
ing the isospin around the “isospin y-axis” by 180◦, you interchange protons
with neutrons, just like interchanging spin up and spin down states. If the
nuclear force is indeed invariant under the isospin rotation, it must also be
invariant under the isospin reversal. Fig. 7) shows that indeed the nuclear
spectra approximately respect this invariance. Of course, isospin is not an
exact symmetry because protons and neutrons have different electric charges.
But the isospin invariance goes even further (“charge independence”). It says
that the not only the interaction between pp and nn are the same (“charge
symmetry”), also np is, except that you have to carefully select the config-
uration. Here is what is required. Because proton and neutron both carry
I = 1/2 (and opposite Iz = ±1/2), two nucleon states would have both I = 1
and I = 0 components. Both pp and nn states are said to be in the I = 1
state. On the other hand, the np state can either be in the I = 1 or I = 0
states. But the fermion wave function must be anti-symmetric while I = 1
(I = 0) isospin wave function is symmetric (anti-symmetric). Therefore, if
the space and spin wave function of a np state is symmetric (anti-symmetric),
it selects I = 0 (I = 1) isospin wave function. This way, you can separate
purely I = 1 part of the np wave function, and compare the interaction to
that of the nn and pp states. And they are indeed the same up to corrections
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from Coulomb interaction. On the other hand, the force in the I = 0 state
can be different. For instance, the only two-nucleon bound state is the deu-
terium, an np state. What is suggests is that the bound state is in the I = 0
state, and anti-symmetric isospin wave function. Then the rest of the wave
function must be symmetric. For a given potential, the S-wave is always
more binding than the P -wave just because it lacks the centrifugal barrier.
Therefore the deuterium is likely to be in the S-wave, a symmetric spatial
wave function. Then the spin wave function must be symmetric, S = 1.
Indeed deuterium does have spin one. A more quantitative test can be seen
in Fig. 8. 21F, 21Ar, 21Na, and 21Mg all have the mass number 21. Assuming
18F is in the I = 0 state, all four nuclei can be obtained by adding three
neutrons to it, which can be in either I = 3/2 or I = 1/2 states. The nuclear
excitation spectra show states common only between 21Ar and 21Na, which
are in the I = 1/2 state, or states common to all four of them, which are in
the I = 3/2 state. Similarly check can be done among 14C, 14N, 14O, which
show states common to all of them (I = 1) or states special to 14N (I = 0).

4 Yukawa Theory and Two-nucleon System

Given the properties of the nuclear force described in the previous section,
what, after all, is it? I briefly go through the explanations in a quasi-historic
way, but this is by no means rigorous or exhaustive. But hopefully I can
give you an idea on how we came up with the current understanding, namely
Quantum ChromoDynamics (QCD).

The obvious oddity with the nuclear force was its short-rangedness. Peo-
ple knew gravity and electromagnetism; both of them are long-ranged, with
their potential decreasing as 1/r. On the other hand, the nuclear force is
practically zero beyond a few fm. As we will discuss in the “Quantization of
Radiation Field,” the electromagnetic interaction is described by photons in
the fully quantum theory. Likewise, the nuclear force must also involve a par-
ticle that is responsible for the force. Such a particle is often called a “force
carrier.” The idea of the force carrier is simple: quantum mechanics allows
you to “borrow” energy ∆E violating its conservation law as long as you give
it back within time ∆t ∼ h̄/∆E allowed by the uncertainty principle. Take
the case of an electromagnetic reaction, say electron proton scattering. An
electron cannot emit a photon by itself because that would violate energy
and momentum conservation. But it can do so by “borrowing” energy as
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Figure 8: Comparison of excitation spectrum of four nuclei with the same
mass number, showing states with I = 1/2 and I = 3/2 multiplet struc-
ture. From “Theoretical Nuclear Physics,” by Amos deShalit and Herman
Feshbach, New York, Wiley, 1974.
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long as the created photon is absorbed by the proton within ∆t allowed by
the uncertainty principle. Then the “virtual photon” has propagated from
the electron to the proton, causing a scattering process, because of its kick
when emitted by the electron and when absorbed by the proton. Since the
photon is a massless particle with E = cp, its energy can be arbitrarily small
for small momenta, and hence ∆t can be arbitrarily long. The distance the
“virtual photon” can propagate can also be arbitrarily long d = c∆t. This
is why the electromagnetic interaction is long-ranged. If, on the other hand,
the force carrier had a finite mass m, there is a minimum energy required
to create the force carrier particle Emin = mc2. Therefore the time to pay
back the debt is limited: ∆t = h̄/mc2. The distance the force carrier can go
within the allowed time limit is then also limited: d = c∆t = h̄/mc. There-
fore the force carrier cannot go beyond this distance and the force becomes
short-ranged. This distance determined by the mass of the particle is called
“Compton wavelength.” Yukawa suggested back in 30’s that the force carrier
of the nuclear force must therefore be massive. Judging from the range of the
nuclear force of about two fm, he suggested that the force carrier must weigh
about 200 times electron, or 100 MeV/c2. The short-rangedness is then an
immediate consequence of the finite mass.

The presence of the charge exchange reaction suggests that the force
carrier is (or at least can be) electrically charged. This particle is called
charged pion π− or π+ in the modern terminology. The charge exchange
reaction, producing the backward peak in the np scattering is caused by the
following process. When the neutron comes close to the proton, the neutron
emits the force carrier π−, and it becomes a proton (!). Even though (from
the neutron point of view) she is still going pretty much straight ahead, we
see the proton coming along the original direction of the neutron, namely the
“backscattered proton.” The emitted π− is then absorbed within the time
allowed by the uncertainty principle and the proton becomes a neutron.

By 40’s there was discovered a particle that weighs 200 times electron in
cosmic rays (or more precisely, 105.7 MeV/c2). This of course raised hope
that the discovered particle may be the force carrier for the nuclear force.
After intensive research, however, especially that carried out by Italians hid-
ing (literally) underground in Rome under Nazi’s occupation in 1945, it was
shown that the new particle does not show any sign to feel the nuclear force.
This particle is what is now called muon µ±. Indeed, underground is a good
place to study muons! Later on people speculated that there may be two new
particles weighing 200 times electron, and this is indeed what happened. By
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going to higher altitudes on the Andes in cosmic ray studies, people have
found that the charged pions exist in cosmic rays, which quickly (within
about 10−8 sec) decay to muons which live longer (about 10−6 sec) and reach
the surface of the Earth. (Of course their life is stretched by the relativistic
time dilation effect. Otherwise we didn’t have a chance to detect them even
on the Andes.) Only at higher altitudes, pions had chance to enter the de-
tector (photographic films). Later on, a neutral pion π0 was also discovered
that decays into two photons. They are later determined to have no spin
and odd parity. Once found, it seemed to confirm Yukawa’s suggestion. The
potential between nucleons caused by the exchange of a “virtual pion” was
calculated to have the following form

V =
1

3

g2

h̄c

m2
π

4m2
N

mπc
2(~τ1 · ~τ2)

[
(~σ1 · ~σ2) +

(
1 +

3

µr
+

3

(µr)2

)
S12

]
e−µr

µr
. (6)

Here µ = mπc/h̄ withmπ with the small difference betweenmπ± = 139.6 MeV/c2

and mπ0 = 135.0 MeV ignored in the same spirit as we ignore the proton-
neutron mass difference and call it mN . The factor

S12 =
1

r2
[3(~σ1 · ~r)(~σ2 · ~r)− (~σ1 · ~σ2)r

2] (7)

is the form for the phenomenologically required tensor force. The matrices
~τ = 2~I are the analogs of Pauli matrices for the isospin. The important
point with the potential is that it is indeed invariant under the rotation of
the isospin space because of the form (~τ1 · ~τ2).

The OPE (one-pion-exchange) exchange Eq. (6) works well in the two-
nucleon system. We have seen that there is only one bound state in two-
nucleon system, namely deuteron, with I = 0, L = 0, S = 1. Let us see if
this is consistent with the OPE potential. We focus on the s-wave (L = 0)
which doesn’t have the centrifugal barrier and presumably binds the most.
When I = 1 ((~τ1 · ~τ2) = +1), the Fermi statistics requires S = 0 (~σ2 = −~σ1

and hence (~σ1 · ~σ2) = −3). Then the tensor force is proportional to

S12 =
1

r2
[3(~σ1 · ~r)(~σ2 · ~r)− (~σ1 · ~σ2)r

2] =
1

r2
[−3(~σ1 · ~r)(~σ1 · ~r) + 3r2]. (8)

At the lowest order in the potential in perturbation theory, using the fact
that the s-wave is isotropic, we find 〈rirj〉 = 1

3
〈r2〉, and hence the tensor

force vanishes identically. Therefore, the OPE potential is

V = −g
2

h̄c

m2
π

4m2
N

mπc
2 e

−µr

µr
. (9)
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This potential is attractive, of finite range, and may or may not have a bound
state depending on the size of the coupling g2/h̄c and mπ. For the actual
values, there is no bound state.

On the other hand, for the I = 0, L = 0, S = 1 case, we have (~τ1 ·~τ2) = −3
and (~σ1 · ~σ2) = +1. Let us take Sz = +1 state as an example. Then the
tensor force does not vanish, and its expectation value is proportional to

〈S = 1, Sz = +1| 1
r2

[3(~σ1 · ~r)(~σ2 · ~r)− (~σ1 · ~σ2)r
2]|S = 1, Sz = +1〉

= 〈S = 1, Sz = +1| 1
r2

[3(σz
1z)(σ

z
2z)− r2]|S = 1, Sz = +1〉

=
2z2 − x2 − y2

r2
. (10)

Therefore, the OPE potential is

V = −g
2

h̄c

m2
π

4m2
N

mπc
2

[
1 +

2z2 − x2 − y2

r2

]
e−µr

µr
. (11)

The coefficient of the potential is the same as the I = 1 case, except that

there is an addition of the quadrupole moment r2Y 0
2 =

√
5

16π
(2z2 − x2 −

y2). If the quadrupole moment is positive, which means a cigar-like shape,
as opposed to negative, which means a pancake like shape, the quadrupole
moment adds to the attractive force and can lead to a bound state even
if the I = 1 case doesn’t. Experimentally, the quadrupole moment of the
deuteron is confirmed and has the value Q(d) = 2.78 × 10−27 cm2. The
deuteron indeed has a cigar-like shape where the spins are lined up along the
elongated direction.

In order for the quadrupole moment to be non-vanishing, however, a pure
S-wave would not do the job because it is completely isotropic. However,
the state with total J = 1 with S = 1 can also arise from L = 2. In fact,
the deteron has a mixture of L = 2 state that is responsible for the finite
quadrupole moment.

5 Fundamental Description of Nuclear Force

Now the world looked simple: there are protons and neutrons in nuclei,
bound together by the force mediated by the exchange of pions. But the
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world wasn’t so simple after all. The first little problem is that the coupling
needed for the pion-nucleon coupling was extremely big. The analog of the
fine-structure constant was

g2

h̄c
' 15. (12)

Clearly, the perturbation theory which expands systematically in powers of
g2h̄c is very badly behaved. Therefore the nuclei are very strongly coupled
system and theoretically very hard to deal with.

The problem starts when you want to probe shorter distances. The first
sign of the problem is the hard core in the nucleon-nucleon potential. The
one-pion-exchange potential does not give you that. Then what about two-
pion exchange? Remember the large coupling constant: the two-pion ex-
change is actually bigger than the one-pion exchange in general. Fortunately,
the two-pion exchange would be suppressed beyond the distance h̄/(2mπc),
and hence the long-distance behavior is still valid with the one-pion exchange.
But at shorter distances, more and more pion exchanges, or higher orders in
g2/h̄c are increasingly important and the perturbation theory is clearly not
working. In general, this simple picture of the world starts faltering as you
go to shorter distances, or equivalently, higher momentum transfers.1

The hell really broke loose when people discovered many more particles
that participate in the nuclear force, collectively called hadrons. There are
many more mesons , a general version of pions that are bosons, have integer
spins. There are also many more baryons , a general version of nucleons
that are fermions, have half-odd integer spins. These particles appear in
the collision of nucleons and mesons as resonances. Are they all elementary
particles? People believed for a long time that they are, because they are of
the same family as protons and neutrons, which people firmly believed were
elementary.

One organizing principle came out when people looked at the masses
and the spins of hadrons of the same type (i.e., same isospin, same parity,
etc). By plotting the masses and spins on the so-called Chew–Frautschi
plot2 on the (m2, J) plane, the hadrons of the same type fall on straight

1Another sign of the problem is that the magnetic moments of proton and neutron are
anomalous: gp/2 = 2.79 and gn/2 = −1.91 as opposed to the Dirac’s values: gp/2 = 1,
gn/2 = 0. One can try to explain the numbers by the quantum fluctuation of pions in
the vacuum, as we do in the Lecture Note “QED,” but again the non-convergence of
perturbation series makes it impossible to draw a reliable conclusion.

2This is Jeff Chew of our Department.

19



0

500

1000

1500

2000

2500

3000

3500

mesons
N baryons
strange mesons
S baryons
Lambda baryons
D baryons

m
as

s 
[M

eV
/c

2 ]

p

p, n

Figure 9: The good-old world of protons, neutrons, and pions was replaced
by a “subatomic zoo” after so many resonances were discovered. Note 1968
Nobel prize to Luis Alvarez (Berkeley).

lines: J = α(0) + α′m2. The intercept α(0) depends on the types, but α′

came out more-or-less the same: α′ ' (1.2–1.4 GeV−2). This value led to the
following picture: the hadrons are elastic strings, not particles. When the
string is stretched, there is a constant tension T , giving the energy Tr where
the r is the length of the string. This was the beginning of the string theory.
If you regard Tr as a potential energy, a hand-waving analysis indeed gives
the linear relation between E2 = (mc2)2 and J . Write down the relativistic
kinetic energy cp and the linear potential Tr:

H = cp+ Tr. (13)

In the spirit of Bohr’s argument, pr = lh̄. Therefore,

E =
h̄cl

r
+ Tr. (14)

Minimizing it with respect to r, we find the average length of the string

r =
√
h̄cl/T and its energy

E =
h̄cl√
h̄cl/T

+ T
√
h̄cl/T = 2

√
h̄clT , (15)
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Figure 10: The scatter plot of hadrons on (m2, J) plane for the type of pions
(left) and nucleons (right). The points all appear limited by a straight line
on the right.

and hence

m2 = (E/c2)2 =
4T

c
l. (16)

Indeed, the mass-squared is linear with the angular momentum l!3

Even though this picture of elastic strings seems to reproduce the Chew–
Frautschi relation qualitatively, what it meant was a (sort-of) return of
Thomson-model of atoms: a jelly-like, fluffy, elastic, continuous medium
rather than a hard-centered composite objects. This picture was proven
to be false experimentally by an experiment at SLAC, bombarding protons
by very energetic (in the standard of their time) electrons. This experiment
is a repetition of the Rutherford experiment, called Deep Inelastic Scattering
experiment, except that his α-particle is replaced by the electron (this is a

3The correct quantum mechanical treatment of a relativistic string turned out to be
much more difficult. You start with Nambu–Goto action and quantize it, and find that
the quantization procedure is consistent only in 26-dimensional spacetime. Even that
case predicts a tachyon, a particle with a negative mass-squared, whose presence violates
causality because it would go faster than the speed of light. A supersymmetric version
happily gets away with tachyons, but still live in 10-dimensional spacetime. But the
interesting thing about it was that it predicts a massless spin-two particle, which we
don’t see in the world of hadrons but can be identified with the graviton. Since then the
string theory switched its gear from the would-be theory of hadrons to the “Theory of
Everything,” including quantum gravity.
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good idea because the electron is truly elementary as far as we know and we
don’t need to worry about its structure to interpret the data) and the atom
by the proton. Similarly to the Rutherford experiment, they saw electrons
nearly backscattered: something impossible by an elastic string. What it
means is that there are something hard and tiny inside the proton, which
Feynman later called “partons.” They indeed measured the form factor of
the partons by studying the dependence of the cross section as a function of
the momentum transfer, very similar to the discussion we had with the nu-
clear form factor. It turns out that the form factor is nearly independent of
the momentum transfer, which implies that the “partons” are point-like, ap-
parently behaving as free particles. (Remember the form factor is the Fourier
transform of the charge distribution. A constant is the Fourier transform of
the delta function.)

Even that didn’t convince people that the proton was a composite object
for a while. One of the main reason was that, in order to reproduce the
observed pattern of hadrons in terms of point-like constituents, the “par-
tons” had to have fractional electric charges, as pointed out by Gell-Mann
and Neeman. Gell-Mann named them “quarks.” The constituent of the nu-
cleons and pions are supposed to be “up” and “down” quarks, with electric
charges +2

3
|e| and −1

3
|e|. Nobody (except a few wrong experiments) could

find fractionally charged objects. Only in the second half of 70’s, after the
so-called November Revolution in Particle Physics when the teams at SLAC
and Brookhaven independently discovered a particle now called J/ψ, people
started to take the quark model seriously. The J/ψ is now understood as a
boundstate of a charm quark and its anti-particle cc̄, an entirely new type of
quark not seen earlier. Still, people had to answer the question why fraction-
ally charged quarks cannot be seen in isolation. The quarks must somehow
be “confined” inside hadrons.

The work by David Gross4, David Politzer, and Frank Wilczek showed
that a special type of force (non-abelian gauge theory) exhibits exactly the
right behavior. The Coulomb force goes as α/r2, but this type of force goes
like αs(r)/r

2, where the “fine structure constant” actually isn’t a constant
and changes according to the distance scale r of the measurement (or corre-
spondingly the energy scale µ = h̄c/r). It goes to zero at very short distances
(high energies), consistent with the nearly free partons, while goes to infinity
consistent with the eternal confinement. This work was awarded 2002 Nobel

4He was a Berkeley graduate student.
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Figure 11: The experimental data on the “fine-structure constant” of the
strong force αs(µ) as a function of the energy scale of the measurement. It
indeed decreases at higher energies, while goes to infinity at lower energies,
as predicted by Gross-Politzer-Wilczek. The plot is from http://pdg.lbl.

gov/2004/reviews/qcdrpp.pdf

prize of physics.
Now you can reinterpret the “tension” of the string as a potential between

a quark and an anti-quark inside a meson. The potential Tr is linear in r,
and hence there is no way for the quark to get isolated; it would cost an
infinite amount of energy. It turns out that at some distance, it becomes
energetically more favorable to create an additional pair of a quark and an
anti-quark, so that the original meson splits into two mesons. No isolated
quarks. By reinterpreting p in the analysis by the momentum of the quark,
not the rotational motion of the string, you get qualitatively right spectrum.
But then what is causing the linear potential between a quark and an anti-
quark? And why can such a strong force somehow be neglected in the Deep
Inelastic Scattering experiments where the partons behave as free particles?
The answer is the Quantum ChromoDynamics, a theory of quarks and gluons.
The gluon plays the role of the photon in Quantum ElectroDynamics. It turns
out, however, that the gluon produces a linear potential between “charged”
particles (because they are three different types of charges, they are usually
called “colors” instead, even though they have nothing to do with optical
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spectrum). The precise mechanism behind the confinement is still under
active research.

What, after all, was the Yukawa’s theory of nuclear force by the pion
exchange, then? It is now understood as a van der Waals like force among
bound states. The van der Waals force acts among neutral atoms, which
do not have any overall electric charges. But the residual effects due to the
quantum polarizability make them attract each other. In the case of nucleon-
nucleon potential, the situation is similar but somewhat different. A proton
is a bound state of uud quarks while a neutron of udd quarks. Because they
share the same constituents, you may interchange them. If a proton wants
to interchange one of its quarks with the neutron, it needs to “send”, say,
an up-quark to the neutron. But before the up-quark reaches the neutron,
it starts feeling the linear potential, and realizes that it needs to be bound
with something: it then creates a pair of, say, a down-quark and an anti-
down quark. The created down-quark stays with the rest of the proton: it
is now a dud state and has become a neutron. The created anti-down quark
d̄ goes together with the “sent-out” up-quark forming a charged pion ud̄.
This charged pion can now propagate from what-used-to-be-a proton to the
neutron. The d̄ inside the charged pion annihilates together with one of the
d quarks in the neutron, and the up-quark gets together with the rest of
the neutron. It is now a uud state and has become a proton. This is the
charge-exchange reaction via the one-pion exchange. It is still fine, except
that it is only an effective description of what is truly going on useful only
at relatively long distances (even though it is very short from the daily-life
point of view).

6 Fermi Gas

We have learned that the nucleons interact strongly with each other. Obvi-
ously, the multi-body system of strongly interacting particles would be a very
hard subject. But at least we should give it a try. And fortunately, as we
discussed earlier already with the multi-electron atoms, Fermi gas (Thomas–
Fermi) works quite well even when the interactions among particles are quite
strong, because the anti-symmetry of the wave function takes care of the
bulk of the effects of the interactions.

The starting point is the Fermi gas, stacking up nucleons up to the Fermi
level Ef = ~p2

F/2M . Here, M is the nucleon mass, ignoring the difference
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between neutron and proton. The number density ρ of the nucleons has
contributions from both neutrons and protons, each with two spin states.
Therefore,

ρ = 4
∫ pF d~p

(2πh̄)3
= 4

4π

3
p3

F

1

(2πh̄)3
=

2

3π2h̄3p
3
F . (17)

Giving the more-or-less constant density of nuclei ρ = 0.172 nucleons/fm3,
we find pF = 268 MeV/c or kF = pF/h̄ = 1.36 fm−1. The corresponding
Fermi energy is EF = 38 MeV. The average kinetic energy of the nucleon is

〈 ~p
2

2M
〉 =

1

ρ
4
∫ pF d~p

(2πh̄)3

~p2

2M
=

3

5
EF = 23 MeV. (18)

The empirical mass formula gave us the volume term to be 15.68 MeV per
nucleon, and hence the potential energy must be the the sum of the binding
energy and the kinetic energy, 〈V 〉 ' −(16 + 23) = −39 MeV. Neutron
scattering on complex nuclei allows us to estimate the depth of the potential
of around −40 MeV, in rough concordance with this naive estimate.

The symmetry term can be easily estimated in the Fermi gas model.
Because we stack up neutrons and protons independently in the Fermi gas
model, different N 6= Z means that we use different Fermi energies for them.
Clearly, the case with the same Fermi energies would give you the lowest
total energy. That is a contribution to the symmetry term. Here, we don’t
expect a good agreement with data because the nature of the nucleon-nucleon
interaction favors isosinglet, as we saw in the two-nucleon system, and hence
the Fermi gas (without any interactions by definition) cannot account for
the entire symmetry term. In any case, we can estimate it in the following
way. We have N neutrons and Z protons in the same volume Ω. The
Fermi momenta for neutrons and protons are, respectively, determined by
the equations

N = Ω
1

3π2h̄3p
3
F,n, Z = Ω

1

3π2h̄3p
3
F,p. (19)

Then the total energies given by the integral in Eq. (18) are

En = N
3

5

p2
F,n

2M
=

3h̄2

10M

(
3π2

Ω

)2/3

N5/3, Ep =
3h̄2

10M

(
3π2

Ω

)2/3

Z5/3. (20)
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Now we write down the total energy Etot = En + Ep using Z = A
2
− N−Z

2
,

N = A
2

+ N−Z
2

, ρ = A/Ω, and expand in N −Z to the second order and find

Etot =
3h̄2

10M

(
3π2ρ

2

)2/3

A

{
1 +

5

9

(
N − Z

A

)2

+O
(
N − Z

A

)4
}
. (21)

The first term is the kinetic energy contribution to the volume term we
estimated earlier. The second term is the symmetry term. Using the constant
density ρ = A/Ω = 0.172 nucleons/fm3,

Esym =
3h̄2

10M

(
3π2ρ

2

)2/3
5

9

(N − Z)2

A
= 12.8 MeV

(N − Z)2

A
. (22)

The dependence (N − Z)2/A is precisely what we need. However, this ac-
counts for only about a half of the symmetry term asym = 28.1 MeV. The
other half must come from the increase in interaction energies when the num-
ber of protons and neutrons are not equal, i.e., as the total isospin of the
nucleus increases.

One can also try to estimate the surface term assuming a profile for the
density as a function of the radius. I do not going into the discussion here.

The Coulomb term is estimated just by calculating the Coulomb energies
among protons in the nucleus. Similarly to the calculations in the Hartree–
Fock model of atoms, we need to calculate both the direct and exchange
terms.

ECoulomb =
1

2
22

∑
~k1,~k2

[〈~k1, ~k2|
e2

r12
|~k1, ~k2〉 − 〈~k1, ~k2|

e2

r12
|~k2, ~k1〉]

= 2
∫ d~k1d~k2

(2π)6
d~x1d~x2

e2

r12

[
1− e−i(~k1−~k2)·(~x1−~x2)

]

= 2
∫
d~x1d~x2

e2

r12

( 1

6π2
k3

F

)2

−
{

1

2π2

sin kF r12 − kF r12 cos kF r12
r3
12

}2
 .(23)

The integrand vanishes when kF r12 → 0, signaling the “Fermi hole” we talked
about in multi-electron atoms. The first term is just the Coulomb energy of
a uniformly charged sphere,

2
∫
d~x1d~x2

e2

r12

(
1

6π2
k3

F

)2

=
3

5

Z2e2

R
= 0.77 MeV

Z2

A1/3
, (24)
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in good accordance with the coefficient 0.717. Note that we used Z =
2(k3

F/(6π
2))Ω where the volume of the sphere is Ω = 4πR3/3. The sec-

ond term cannot be integrated analytically inside a sphere |~x1|, |~x2| < R.
Fortunately, the integrand asymptotes to zero practically beyond kF r12 >∼ 3.
If you assume that the radius of the nucleus is bigger (kFR � 1), the inte-
gration over r12 can be done independent of the size of the nucleus, and we
find

2
∫
d~x1d~x2

e2

r12

{
1

2π2

sin kF r12 − kF r12 cos kF r12
r3
12

}2

= 2Ω
∫
d~x12

e2

r12

{
1

2π2

sin kF r12 − kF r12 cos kF r12
r3
12

}2

=
9π

4

Z2e2

Ωk2
F

[1− j0(kFR)2 − j1(kFR)2]. (25)

For kFR� 1, the spherical Bessel functions in the square bracket are negli-
gible, and we find the total Coulomb energy to be

ECoulomb = 0.77 MeV
Z2

A1/3

(
1− 1.0

A2/3

)
. (26)

Empirical fit to the data gives

ECoulomb = 0.717 MeV
Z2

A1/3

(
1− 1.69

A2/3

)
, (27)

in reasonably good agreement with the naive Fermi gas model in a rigid
sphere. The discrepancy in the exchange correction is attributed to the sharp
cutoff we assumed at the radius R which needs to be smoother in reality.

7 Shell Model

Overall, it is interesting that the naive Fermi gas model works reasonably well
even for a strongly interacting system like nuclei. But the only agreement
is for the gross property such as the empirical mass formula. Once one
asks more detailed questions, such as the spin-parity of the ground state,
excitation spectrum, etc, we need more detailed models. We will stick to the
independent-particle approximation, namely Fermi liquid, but prepare the

27



single-particle wave function in a little bit more realistic manner. That is the
shell model discussed in this section.

One important observation in the binding energies of nuclei is that there
appears to be special numbers of nucleons for which the nucleus becomes
particularly tightly bound. Such numbers are called the magic numbers .
Look at the neutron-pair separation energies in Fig. 12. (It is better to look
at the neutron-pair separation energies than a single neutron separation en-
ergies because of the pairing force.) The lines show the dependence of the
separation energies for fixed N as a function of Z, which steadily increases
consistent with the volume term of the empirical mass formula. The inter-
esting comparison is among the lines. As you increase N , the separation
energy decreases. But above N = 82 and 126, the decrease is dramatic while
the amount of decrease is more-or-less the same above and below these gaps.
This is a signal that the neutrons fill up a shell up to N = 82, beyond which
they start filling the next shell which is less bound, and similarly for 126. A
systematic study of this type showed that the magic numbers are

2, 8, 20, 28, 50, 82, 126 (28)

The shell model is normally introduced in successive refinements in the
following manner. We treat the nucleus with the mean-field potential which
we hope approximates the inter-nucleon attractive force. We determine the
energy levels with the mean-field potential, and fill nucleons into the energy
levels independently. What potential shall we take? Because the nuclei have
finite size and the nuclear force is short-ranged, the potential must also be
short-ranged, practically zero outside the nucleus. Therefore a crude approx-
imation would be a spherical well potential, but not with a step function at
some radius. It needs to be an attractive potential well with relatively con-
stant potential energy inside the nucleus, while smoothly vanishing outside
the nucleus.

To avoid getting into numerical problems, we approximate the mean field
potential by a harmonic oscillator potential initially. Then we “lower” the
potential at large radius to take the vanishing of the potential outside the
nucleus into account. Finally we introduce the spin-orbit coupling which is
quite important. The last point was realized by Mayer and Haxel-Jensen-
Suess in 1949, which led to the widely-used shell model of nuclei.

The three-dimensional isotropic harmonic oscillator has a very simple
spectrum. We have three independent creation/annihilation operators ax,
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Figure 12: Taken from “Theoretical Nuclear Physics,” by Amos deShalit and
Herman Feshbach, New York, Wiley, 1974.
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ay, az, with the same frequency because of the isotropy. The Hamiltonian is
then

H = h̄ω(a†xax + a†yay + a†zaz) (29)

where we ignored the zero-point energies. Because of the isotropy, we must
be able to label states according to the angular momentum of the states. The
ground state is obviously an s-state. Let us call it 1s state. The first excited
state is obtained by acting one of the creation operators on the ground state,
giving three states. Because (ax, ay, az) transforms as a vector under rotation,
it is the same as the Y 1,0,−1

1 , hence it is an p-state. Because of the historical
reason, we call it 1p state rather than 2p state unlike in the hydrogen atom.
The rule is that we call it 1x state whenever the x-wave appears for the
first time, and 2x the second time, and so on. Also, (ax, ay, az) is odd under
parity and hence the 1p state has odd parity. In general, states at even
levels E = 2nh̄ω have even parity, while those at odd levels E = (2n− 1)h̄ω
odd parity. The second excited state has two creation operators. There
are three states using the same creation operator twice, and three states
using two different creation operators, giving six states in total. Combination
[(a†x)

2 + (a†y)
2 + (a†z)

2]|0〉 is invariant under rotation, and hence the 2s-state,
while the other five form multiplets of 1d-state. Both of them have even
parity. The third excited states are 2p and 1f with odd parity, the fourth
excited state 3s, 2d, 1g with even parity, and so on. The harmonic oscillator
labels are shown on the very left in Fig. 13. The would-be magic numbers
with the harmonic oscillator potential are: 2, 8, 20, 40, 70, 112, 168. The first
three agree with the observed magic numbers, while the latter three don’t.

The shell model potential flattens beyond the radius of the nucleus, and
hence brings the energy down at large radii. Because higher orbital angular
momenta correspond to larger radii, the states with higher angular momenta
come down. Therefore, within the second excited levels, the 1d states are
lower than the 2s state. Similarly, the 1f states are lower than the 2p states
among the third excited levels. This ordering is shown on the 2nd column
in Fig. 13. We then turn on the spin-orbit coupling ~L · ~S. States with
the orbital angular momentum l are split into states with j = l + 1/2 and

j = l− 1/2. The shifts in the energy eigenvalues are proportional to ~L · ~S =
(j(j + 1)− l(l+ 1)− 3/4)/2. Which one is higher depends on the sign of the
spin-orbit coupling. We assume the opposite sign from that in the hydrogen
atom to be consistent with the data. As a result, states with higher j are
lower. The splitting is larger for larger l. The ordering of states shown
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in Fig. 13 is obtained by appropriately choosing the size of the spin-orbit
coupling. Most importantly, the largest l states within a given harmonic
oscillator level are at the bottom with flattened potential and are further
brought down the most because of the spin-orbit coupling. They join the
lower harmonic oscillator level and change the magic numbers. We now find
the magic numbers to be; 2, 8, 20, 28, 50, 82, 126, 184. This set of magic
numbers is in perfect agreement with the empirical one Eq. (28).

The shell model tells us more than the magic numbers. For instance,
Fig. 14 shows the low-lying excitations of 90Zr nucleus. 90Zr has 40 protons
and 50 neutrons. 50 Neutrons form a close shell, filling up to 1g9/2. 28
of 40 protons fill first four shells, while the remaining 12 fill 2p3/2, 1f5/2,
and 2p1/2. If you excite one of the protons in 2p1/2 to 1g9/2, the remaining
proton in 2p1/2 and the proton in 1g9/2 can form states with odd parity
and J = 4 and 5. There are indeed 4− and 5− states. 5− state is lower
presumably because two protons are closer in space by lining up the orbital
angular momenta. If you excite both protons from 2p1/2 to 1g9/2, it could
give J = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9; but the anti-symmetry of the wave function
leaves only J = 0, 2, 4, 6, 8 as possibilities. They should all have even parity.
Indeed, we see 0+, 2+, 4+, 6+, 8+, in this order. The ordering is due to the
pairing, which favors the state to be paired with its time-reversed one. This
way, we can understand the level structure of nuclei when they are close to
the closed-shell configurations. Fig. 14 also shows the calculated levels based
on a simple model.

As you see, the shell model works quite well, not only explaining the
magic numbers but also the level structures. It can also be used to calculate
transition matrix elements in γ-decays (we will do this for atoms when we
quantize the radiation field), magnetic moments and other multiple moments
of nuclei, etc. However, I have to remind you that the shell model is based on
the mean field potential, which has not been derived from the first principle,
and is also based on the independent particle approximation. It for example
ignores all correlation effects. We had learned in atomic physics that the
independent particle approximation (Hartree–Fock model) works quite well.
But there, the mean field potential could be calculated . In nuclear physics,
the shell model potential is assumed based on empirical facts rather than
calculated. One of the difficulties in calculating the mean field potential is
that the nuclear force is not only two-body interaction (as in the Coulomb
force), but also has multi-body potentials because it is not a fundamental
interaction but rather a residual force.
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Figure 13: Taken from “Theoretical Nuclear Physics,” by Amos deShalit and
Herman Feshbach, New York, Wiley, 1974.
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Figure 14: Taken from “Theoretical Nuclear Physics,” by Amos deShalit and
Herman Feshbach, New York, Wiley, 1974.
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8 Deformed Nuclei

If you go away from the closed-shell configurations, the level structure can
become much more complex, with many levels closely located. In such nuclei,
the mixing among levels becomes important and the Fermi surface (i.e., the
boundary between filled and unfilled states) can be deformed significantly.
In nuclei, it results in dramatic consequences: the nuclei are indeed deformed
in their shapes.

In Fig. 15, energy levels of 176Yb (Z = 70, N = 106), 178Hf (Z = 72,
N = 106), and 178W (Z = 74, N = 104) are shown. The first important point
is that the excitation energies are very low. In 90Zr, the first excited level
was 1.75 MeV above the ground state. On the other hand, the first excited
level is at 0.082 MeV for 176Yb. What it means is that the single-particle
configurations are closely located and they highly mix. Another interesting
point with these spectra is that the quantum numbers are ordered in a highly
regular way: 0+, 2+, 4+, all the way up to 14+ in the case of 178W. These
are the typical examples of rotational levels . These nuclei have roughly half-
filled shells, and many single particle states are closely located, get mixed,
and conspire in such a way that the nuclei get elongated: cigar-like shape.
They can rotate like a rigid rotator, producing the rotational levels. The
energy levels can be fit quite well with the simple formula

E(J) = AJ(J + 1) +BJ2(J + 1)2. (30)

The first term is that of a rigid rotator. The coefficients A and B are shown
for each nucleus in Fig. 15.

Fig. 16 shows the quadrupole moments of nuclei as a function of odd
number of nucleons. (Remember all even-even nuclei have 0+ ground states
and hence their quadrupole moments vanish identically even if they are de-
formed. On the other hand, measuring moments of excited and hence short-
lived states is difficult. That is why odd-nucleon nuclei are useful here.)
Close to the magic numbers, the quadrupole moments almost vanish, while
in between the magic numbers, the nuclei show large quadrupole moments.

To understand nuclei with large deformations, we must deviate from the
isotropic shell-model potential. The starting point is the anisotropic har-
monic oscillator

H = h̄ω1(a
†
xax + a†yay) + h̄ω2a

†
zaz. (31)

Nuclei show a variety of other collective excitations beyond the overall
rotation discussed in this section. For instance, 208Pb is a doubly-closed
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Figure 15: Taken from “Theoretical Nuclear Physics,” by Amos deShalit and
Herman Feshbach, New York, Wiley, 1974.
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Figure 16: Taken from “Theoretical Nuclear Physics,” by Amos deShalit and
Herman Feshbach, New York, Wiley, 1974.
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shell nucleus, and hence is completely isotropic and tightly bound. Because
the next excitation is quite high in the shell-model language, what it does
is to create a small octupole deformation. The lowest excited state is 3−

and corresponds to a deformation to pear-like shape. There are quadrupole
surface oscillations like those in a liquid drop.

9 Chemical Evolution of Universe

We live in a rich world with many chemical elements around us. How did
they come to exist? It is not a question in chemistry but is rather a question
in nuclear physics, because chemical elements form when electrons get bound
to particular types of nuclei with a given atomic number. Therefore the more
correct question to ask is: how were vastly different types of nuclei formed
in our Universe?

As you know, Universe started with Big Bang, a hot dense plasma of
elementary particles in an expanding spacetime. If we start from the time
when the temperature of the Universe was T > 1013 K (kT > 1 GeV),
the Universe was a soup of quarks, electrons, neutrinos, their anti-particles,
interacting with photons and gluons. It was so dense and hot, that all these
particles were in thermal equilibrium interacting with each other.

As the Universe cooled to about kT ∼ 100 MeV, quarks and anti-quarks
realized that they had to be confined in hadrons. Basically all of them formed
mesons, mostly pions, which eventually decayed to muons and neutrinos.
Therefore almost all of the quarks were lost. Only one out of ten billions
was left over, without encountering another anti-quark to bound together
or annihilate against. It is still a big puzzle what caused this tiny excess
in the amount of quarks over anti-quarks in our Universe. One of major
motivations behind detailed studies of B-mesons and neutrinos world-wide it
to understand this question. Whatever the reason is, this tiny excess allowed
a small fraction of quarks to be left over, forming protons and neutrons.

At this stage, Universe was about one millisecond old, and was made of
mostly photons, electrons, positrons, neutrinos, anti-neutrinos (three types
each), and very few protons and neutrons. Because of many photons kicking
protons around all the time, protons could not get bind with other protons
and neutrons, of course not with electrons either. The numbers of protons
and neutrons were also in chemical equilibrium because of the reaction e−p↔
νen and ν̄ep ↔ e+n. Namely, there were equal numbers of protons and
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neutrons.
As the Universe further cooled, neutrinos stopped interacting with the

rest of the matter. That is because the cross sections for neutrinos to interact
grow with their kinetic energy, and hence at lower temperatures, they do not
have enough kinetic energy to interact fast enough before the expansion of
Universe take them apart. At this point, at the temperature of about a few
MeV, or at the age of Universe of about ten seconds, the number of neutrons
froze, namely they ceased to be in chemical equilibrium, and the relative to
the number of protons was determined to be nn/np = e−(mn−np)c2/kT . From
this point on, neutrons started to decay with the lifetime of about 15 minutes.

The binding energy of deuteron is 2.2 MeV. Even after the temperature
dropped below this value, there are so many photons around and the Boltz-
man tail in the distribution was enough to dissociate deuterons that were
formed. The number of neutrons started to drop because of their decay
n→ pe−ν̄e.

However, at the temperature of about 100 keV, or when the Universe
was as old as a few minutes, finally temperature dropped enough to allow
deuterons to form. Further reactions such as dn → 3He, 3Hed → 4Hep,
dd→ 4He made basically all the remaining neutrons to end up in 4He because
4He (or α particle) was particularly tightly bound. Because the number of
neutrons was already much less than that of protons, we ended up with only
about a quarter of the total nucleons in 4He while the rest still in free protons.
Some of they further proceeded to form other light nuclei, 6Li, 7Li, etc. This
whole process is called Big-Bang Nucleosynthesis.

Calculation of light element abundances from Big-Bang Nucleosynthesis
has only one free parameter: the amount of protons and neutrons relative to
that of photons, η = nB/nγ. It is plotted in Fig. 17 in the unit of 10−10. It
is remarkable that the observation and calculation agree for η ' 5 × 10−10

for all D, 3He, 4He, 6Li. For the determination of η, however, the deuterium
abundance plays the dominant role.

How do we determine how much deuterium (maybe “deuteria” for plural?)
there is in our Universe, when it has exactly the same chemical property
as the ordinary hydrogen? The answer is remarkably simple: look at the
spectral lines. But aren’t they also the same? Well, almost, but not quite.
When you solve the hydrogen atom spectrum, you use the reduced mass
m = memp/(me +mp) ' me(1−me/mp). For deuterium spectrum, however,
the reduced mass is slightly different, m = memd/(me + md) ' me(1 −
me/md) ' me(1−me/2mp). This tiny difference of one part in four thousands
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is significant in spectroscopy. The system they use is distant cold hydrogen
cloud that is back-lit by an even more distant quasar. The spectral absorption
lines due to the hydrogen cloud show the Lyman series, but there are dimmer
lines slightly shifted due to small amount of deuterium atoms. This way,
they believed to have determined the amount of deuterium atoms relative
to ordinary hydrogen before it forms galaxies and stars and deuterons get
synthesized into bigger nuclei. Remarkably, the hydrogen abundance in our
solar system5 agrees with this value in the distant hydrogen cloud quite well.

A recent (2003) major achievement is that the precise study of the cos-
mic microwave anisotropy by WMAP satellite (D.N. Spergel et al , Astro-
phys. J. Suppl. 148 175 (2003)) showed that the baryon-to-photon ratio
η = 6.5+0.4

−0.3 × 10−10 when the universe was much colder (3000K vs 1010K),
consistent with the determination from the Big-Bang Nucleosynthesis. This
agreement makes us believe that we understand the evolution of the universe
back to when the temperature was 1010K and when the universe was only
about a second old.

Heavier nuclei are synthesized by thermonuclear process in stellar interi-
ors. The Sun burns mostly protons and make helium at the core of temper-
ature 1 keV. This is done in a series of reactions in the so-called pp-chain:

pp→ de+νe (32)

dp→ 3Heγ (33)
3He3He → 4Hepp. (34)

The first one involves “the weak interaction,” (a proper noun for a force that
is responsible for a variety of phenomena such as nuclear beta decay, decay of
pions, production of Z0 boson at LEP, decay of top quark at Tevatron, etc)
and is the slowest. In the Sun, the fusion process does not go much further,
until all the protons are used up.

When the Sun gets old and uses up hydrogen, the core pressure from the
fusion energy suddenly drops and it can no longer support its entire mass.
Then the core contracts while the outer region expands dramatically. The
Sun becomes a red giant. As the core contracts, the temperature rises and
4He start to fuse despite its larger Coulomb barrier than protons. Where the
process stops depends on the mass of the star. The Sun probably stops mostly
with helium. As the fusion process winds down, the core pressure weakens

5For example, Voyager spacecraft measured the abundance of deuterium atoms in the
atmosphere of Jupiter when it flew by it.
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Figure 17: Comparison of observed abundance of light elements and calcu-
lation in Big-Bang Nucleosynthesis. Taken from astro-ph/0012382 by T. X.
Thuan and Y. I. Izotov.
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again, the outer region gets blown off while the core further collapses. The
collapse stops when the electron degeneracy pressure becomes important,
and the Sun becomes a white dwarf, and becomes dim.

Heavier stars synthesize nuclei up to 12C, 14N, and 16O. 12C is produced
only at a very high temperature above 10 keV, where the fusion reaction
4He4He 4He → 12C can take place. Once 12C is there, it can serve as a
catalyst for the so-called CNO cycle:

12Cp→ 13Nγ (35)
13N → 13Ce+νe (36)
13Cp→ 14Nγ (37)
14Np→ 15Oγ (38)
15O → 15Ne+νe (39)
15Np→ 12Cα. (40)

Yet heavier stars can further burn C, N, O, eventually going all the way to
iron. Heavier elements beyond CNO are therefore produced in the core of
heavy stars which eject these elements when they die. However, as we saw
earlier, the nuclear binding energy has its maximum at A = 56 for 56Fe and
the thermonuclear fusion does not go any further.

When heavy stars burn up all hydrogen, CNO, eventually up to iron, iron
cannot fuse any further, and then there is no way to support the entire mass
of the star, and even the electron degeneracy pressure wouldn’t be enough
for those. As the core collapses, the entire star basically becomes a single
nucleus: a neutron star. The Coulomb repulsion among the protons favors
the conversion of protons to neutrons by absorbing electrons and emitting
neutrinos. The whole star then is supported by the hard core repulsion in
the nuclear force and neutron degeneracy pressure. The bounce from the col-
lapse results in a supernovae, giving rise to a highly dynamic condition in the
envelope. It is hoped that the exploding envelope synthesizes elements be-
yond iron, producing elements such as silver, gold, lead, platinum, uranium,
thorium.6 The idea is that iron (and eventually heavier elements) keep suck-
ing in neutrons without Coulomb barrier, and become highly neutron-rich
nuclei. They decay into more balanced nuclei by beta-decay. This is called

6When you give jewelry to your significant other, maybe talking about gold coming
from supernova may boost the romantic setting. Unfortunately, diamond wouldn’t work
so well for this purpose because carbon is produced in mundane thermonuclear process.
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nuclear r-process (r for rapid).7

Death of the first-generation stars spread out synthesized chemical ele-
ments into the galaxy, allowing the newer generation starts to have some of
the heavier elements as ingredients.8

10 Many Omissions

The discussion on nuclear physics here is very brief, focused only on static
properties. I have not talked about dynamics, such as α-decay, scattering,
fission, fusion, or β-decay.

7Steve Boggs in our Department is trying to verify the supernovae as sites for nuclear
r-process by observing X-ray and gamma-ray from supernova remnants.

8Astronomers call any elements beyond hydrogen and helium “metal.” Chemists don’t
approve this terminology. Physicists and mathematicians don’t mind as long as they are
defined precisely.
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