
221B Lecture Notes
Scattering Theory I

1 Why Scattering?

Scattering of particles off target has been one of the most important applica-
tions of quantum mechanics. It is probably the most effective way to study
the structure of matter at small distances. Due to the uncertainty principle

∆x∆p ≥ h̄

2
, (1)

in order to probe structure at the distance scale ∆x ' d, we need momentum
transfer ∆p >∼ h̄/2d and hence need a high-momentum scattering experiment.

On the other hand, to study the excitation spectrum of a system, one can
study the resonances and/or scattering at relatively low energies.

Rutherford scattering experiment, scattering of α-particles off gold foil, is
the earliest important quantum mechanical scattering experiment of the first
type, and revealed the fact that the positive charge in an atom is concentrated
at the center rather than diffusely distributed throughout the atom, the
“plum-pudding” model by J.J. Thomson.

For non-relativistic problems, time-independent formalism is convenient,
where you study the stationary problem as in the bound state problems. It is
somewhat confusing that you can study the scattering process as a stationary
problem, but this becomes clear later once we discuss wave packets. For
relativistic problems, however, time-dependent formalism is more convenient
because one can keep manifest Lorentz covariance in the formulation.

2 Lippmann–Schwinger Equation

We first study time-independent formalism for scattering. Imagine a particle
coming in and getting scattered by a short-ranged potential V (~x) located
around the origin ~x ∼ 0. The time-independent Schrödinger equation is
simply − h̄2~∇2

2m
+ V (~x)

ψ(~x) = Eψ(~x). (2)
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Because we assumed that the potential is short-ranged, V (~x) ≈ 0 beyond a
certain distance |~x| ∼ a where a is the “size” of the scatterer. Therefore, the
Schrödinger equation Eq. (2) reduces to the free equation at |~x| � a

− h̄2~∇2

2m
ψ(~x) = Eψ(~x), (3)

and hence the energy eigenvalues and eigenfunctions are given by

− h̄2~∇2

2m
ei~k·~x =

h̄2~k2

2m
ei~k·~x = Eei~k·~x. (4)

The question is how this eigenfunction is modified in the presence of the
potential term in Eq. (2).

In order to answer this question, we first go to the “ket” notation 〈~x|ψ〉 =
ψ(~x) and rewrite Eq. (2) as

(H0 + V )|ψ〉 = E|ψ〉. (5)

Here, H0 = ~p2/2m is the free-particle Hamiltonian operator. Because we are
interested in the effect of the potential, we reorder it as

(E −H0)|ψ〉 = V |ψ〉. (6)

Naively, we can write the solution to Eq. (6) as

|ψ〉 =
1

E −H0

V |ψ〉. (7)

But this is not correct because E−H0 can be zero and this formal expression
is ill-defined. First of all, we need to specify how we go around the pole
of 1/(E − H0); this corresponds to specifying a boundary condition to the
solution. For our purpose, we choose 1/(E−H0 + iε) where we take the limit
ε → +0 at the end of the calculations. The meaning of this choice becomes
clear when we discuss wave-packets in the next section. Second, because
E −H0 can be zero, there are solutions (E −H0)|φ〉 = 0, which are nothing
but the free plane wave solutions. Therefore, we can write the solution to
this equation as

|ψ〉 = |φ〉+
1

E −H0 + iε
V |ψ〉. (8)
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One can easily check that Eq. (8) satisfies the equation Eq. (6). This equation
is called Lippmann–Schwinger equation. Because |φ〉 is a solution to the free

equation, we normally take it a plane wave |h̄~k〉 with E = h̄2~k2/2m and
momentum hk̄.

To gain more insight into the Lippmann-Schwinger equation, let us take
the position representation of this equation, by taking the inner product of
Eq. (8) with the “bra” 〈~x|. We find

ψ(~x) = 〈~x|ψ〉 =
1

(2πh̄)3/2
ei~k·~x + 〈~x| 1

E −H0 + iε
V |ψ〉

=
1

(2πh̄)3/2
ei~k·~x +

∫
d~x′〈~x| 1

E −H0 + iε
|~x′〉〈~x′|V |ψ〉

=
1

(2πh̄)3/2
ei~k·~x +

∫
d~x′〈~x| 1

E −H0 + iε
|~x′〉V (~x′)ψ(~x′). (9)

At the very last step, we used the fact that the potential operator is diagonal
in the position representation 〈~x′|V |~x〉 = V (~x)δ(~x − ~x′). Then the question
is the exact form of the Green’s function

G(~x, ~x′) = 〈~x| 1

E −H0 + iε
|~x′〉. (10)

By inserting the complete set of states in the momentum representation, and
using the fact that H0 is diagonal in the momentum space, we find

G(~x, ~x′) =
∫
d~p〈~x|~p〉 1

E − ~p2/2m+ iε
〈~p|~x′〉

=
∫
d~p

ei~x·~p/h̄

(2πh̄)3/2

1

E − ~p2/2m+ iε

e−i~x′·~p/h̄

(2πh̄)3/2

=
∫
d~p
ei(~x−~x′)·~p/h̄

(2πh̄)3

1

E − ~p2/2m+ iε
. (11)

There are many ways to do this integration. One way is to use polar coor-
dinates for ~p defining the polar angle relative to the direction of ~r = ~x − ~x′

such that

G(~r) =
∫ ∞

0
p2dp

∫ 1

−1
d cos θ

∫ 2π

0
dφ
eipr cos θ/h̄

(2πh̄)3

1

E − p2/2m+ iε

=
2π

(2πh̄)3

∫ ∞

0
p2dp

eipr/h̄ − e−ipr/h̄

ipr/h̄

1

E − p2/2m+ iε
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=
1

(2πh̄)2

∫ ∞

−∞
pdp

eipr/h̄

ir

−2m

p2 − 2mE − iε

=
1

(2πh̄)2

2mi

r

∫ ∞

−∞
dp

peipr/h̄

(p−
√

2mE − iε)(p+
√

2mE + iε)
. (12)

Because of the numerator eipr/h̄, we can extend the integration contour to go
along the real axis and come back at the infinity on the upper half plane.
Then the contour integral picks up only the pole at p =

√
2mE+iε = h̄k+iε,

and we find

G(~r) =
1

(2πh̄)2

2mi

r
2πi

h̄keikr

2h̄k

= −2m

h̄2

eikr

4πr
. (13)

Going back to Eq. (9), we now obtain

ψ(~x) =
1

(2πh̄)3/2
ei~k·~x − 2m

h̄2

∫
d~x′

eik|~x−~x′|

4π|~x− ~x′|
V (~x′)ψ(~x′). (14)

This result allows a simple interpretation. The first term (plane wave) is the
incident particle with a fixed three-momentum, while the second term is a
spherical wave originated from the scattering. If we had chosen the opposite
boundary condition 1/(E−H0−iε), we had obtained the second term coming
from infinity and converging at the origin, which is practically impossible to
arrange. This interpretation is further justified using wave-packets in the
next section.

The experiment is done typically by placing the detector far away from
the scatterer |~x| � a where a is the “size” of the scatterer. The integration
over ~x′, on the other hand, is limited within the “size” of the scatterer because
of the V (~x′) factor. Therefore, we are in the situation |~x| � |~x′|, and hence
can use the approximation

|~x− ~x′| '
√
~x2 − 2~x · ~x′ ' |~x| − ~x · ~x′

|~x|
. (15)

Under this limit, the Lippmann–Schwinger equation Eq. (14) becomes

ψ(~x) ' 1

(2πh̄)3/2
ei~k·~x − 2m

h̄2

eikr

4πr

∫
d~x′e−i~k′·~x′

V (~x′)ψ(~x′), (16)
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where r = |~x| and ~k′ = ~k
~x

r
is the wave-vector of the scattered wave. Note

that |~k′| = ~k. It is customary to write this equation in the form

ψ(~x) ' 1

(2πh̄)3/2

(
ei~k·~x + f(~k′, ~k)

eikr

r

)
, (17)

with

f(~k′, ~k) = −(2πh̄)3

4π

2m

h̄2 〈h̄~k′|V |ψ〉, (18)

which has a dimension of length. The advantage of using f(~k′, ~k) is that it
is directly related to the scattering cross section

dσ

dΩ
= |f(~k′, ~k)|2 (19)

as we will see later.

3 Wave-Packets

The time-independent solution we discussed in the previous section is not
easy to understand intuitively because both the incident and scattered waves
appear and both waves are spread out over the entire space. What we nor-
mally picture as a scattering process is that there is a particle coming in
with a fixed momentum, and it gets scattered to a different direction, or it
does not get scattered and comes out with the same momentum. In fact,
the time-dependent solution we discussed in the previous section actually
gives precisely this picture once we form wave-packets out of it. We put in
particles and detect particles far away from the scatterer, and we can use the
asymptotic form Eq. (17).

3.1 Free Wave Packets

As an exercise, let us first study wave packets of plane waves. The plane

wave ei~k·~x has a definite momentum ~p = h̄~k (∆p = 0), but is spread out in
the whole space (∆x = ∞) consistent with the uncertainty principle. We
can form a normalized wave-packet which has a momentum approximately
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h̄~k, but has a finite spatial extent d, by taking a linear combination of many
plane waves. We take the so-called Gaussian wave packet

ψf (~x) =

(
d2

2π3

)3/4 ∫
d~qei~q·~xe−(~q−~k)2d2

=
(

1

2πd2

)3/4

ei~k·~xe−~x2/4d2

. (20)

From the last expression, it is clear that the wave packet is concentrated
around ~x ∼ 0 with the spread ∆x = d, while from the middle expression, the
momentum is distributed around h̄~k with ∆k = |~q − ~k| = 1/2d, consistent
with the uncertainty principle.

Time evolution of course moves the wave packet. At time t 6= 0, the
above wave function acquires a phase e−iEt/h̄ where E = h̄2~q2/2m for the
plane wave with momentum h̄~q. Therefore,

ψf (~x, t) =

(
d2

2π3

)3/4 ∫
d~qei~q·~xe−i(h̄2~q2/2m)t/h̄e−(~q−~k)2d2

=

(
d2

2π3

)3/4 (
π

d2 + ih̄t/2m

)3/2

exp

−~x2 − 4i~k · ~xd2 − 4~k2d4

4(d2 + ih̄t/2m)
− ~k2d2

 .
(21)

This expression looks complicated, but it is easy to interpret the probability
distribution |ψ(~x, t)|2:

|ψf (~x, t)|2 =

(
1

2πd(t)2

)3/2

e−(~x−h̄~kt/m)2/2d(t)2 , (22)

with

d(t) =
(d4 + (h̄t/2m)2)1/2

d
. (23)

The wave packet is somewhat larger at t 6= 0 and is located at the position
~x ' h̄~kt/m as expected.

As long as the experiment is done within the time |t| � 2md2/h̄, or in
other words if the momentum is sufficiently well determined, we can ignore
the change in the size of the wave packet. This corresponds to doing the
integral over the phase factor e−iEt/h̄ with E = h̄2~q2/2m approximated as

E =
h̄2~k2

2m
+
h̄2~k · (~q − ~k)

m
+O(~q − ~k)2 (24)
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and dropping the last correction. Then the wave packet is simply

ψf (~x, t) '
(

1

2πd2

)3/4

ei~k·~xe−i(h̄2~k2/2m)t/h̄e−(~x−h̄~kt/m)2/4d2

. (25)

3.2 Wave Packet with Scattering

We now take the wave packet out of Eq. (17) with the same Gaussian weight,
and show that it gives the incoming wave at t� 0, while gives both the un-
scattered outgoing wave with the same momentum and the scattered outgo-
ing wave emerging from the center at t� 0. This would match our intuition
of a scattering experiment.

The wave packet we consider is therefore

ψ(~x, t) =

(
d2

2π3

)3/4 ∫
d~q

(
ei~q·~x + f(~q′, ~q)

eiqr

r

)
e−i(h̄2~q2/2m)t/h̄e−(~q−~k)2d2

. (26)

Of course we assume that the transverse size of the wave packet is large
enough d� a so that entire scattering region is probed by the wave packet.
The injection and detection time is not too long that the size of the wave
packet does not increase siginificantly |t| � 2md2/h̄, but large enough that
the entire packet exits the scattering region |t| � md/h̄k, which is possible
as long as the wave packet has a well-defined momentum ∆k = 1/2d� k.

The first term in the parenthesis gives precisely the same wave packet
as the free case, which comes in and goes out at the position ~x ' h̄~kt/m.
We hence only need to discuss the second term. Because of the Gaussian
damping factor, ~q is highly concentrated around ~q ' ~k and we can replace ~q
by ~k almost everywhere. However, a care must be taken in the phase factors
because the integral vanishes if the integrand oscillates very rapidly. The
exponent in the phase factor is expanded as

iqr − i
h̄2~q2

2m

t

h̄
= ikr − i

h̄2~k2

2m

t

h̄
+ i

(
r − h̄k

m
t

)
~k

k
· (~q − ~k) +O(q − k)2. (27)

The phase factor is stationary only when r − h̄k
m
t = 0 but this is clearly

possible only when t > 0. Therefore, this integral vanishes due to rapidly
oscillating phase factor for t � −md/h̄k, and only the plane wave piece
remains:

ψ(~x, t) '
(

1

2πd2

)3/4

ei~k·~xe−i(h̄2~k2/2m)t/h̄e−(~x−h̄~kt/m)2/4d2

,

(
t� −md

h̄k

)
(28)
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which is the same as Eq. (25). This is nothing but the incoming wave packet
before the scattering takes place.

On the other hand, for t� md/h̄k, the phase can be stationary (27), and
the scattered wave contributes. ~q integration in the scattered wave packet is∫

d~qf(~q′, ~q)
1

r
eikr−i(h̄2~k2/2m)t/h̄ei(r−(h̄k/m)t)~k·(~q−~k)/ke−(~q−~k)2d2

= f(~k′, ~k)
1

r
eikr−i(h̄2~k2/2m)t/h̄

(
π

d2

)3/2

e−(r−(h̄k/m)t)2/4d2

, (29)

and hence

ψ(~x, t) =
(

1

2πd2

)3/4

e−i(h̄2~k2/2m)t/h̄(
ei~k·~xe−(~x−h̄~kt/m)2/4d2

+ f(~k′, ~k)
eikr

r
e−(r−(h̄k/m)t)2/4d2

)
.

(
t� md

h̄k

)
(30)

This wave packet consists of two pieces: one that went through the scattering
region unscattered (the first term) and the other that emerged from scattering
and expands as r ' (h̄k/m)t spherically. However, note that these two waves

interfere at ~x ' (h̄~k/m)t.
If you detect the wave at a direction different from the original plane

wave, the first term simply does not contribute, and the only the second
term is detected. The probability to detect a particle along the direction
(θ, φ) in a solid angle dΩ = d cos θdφ is given by

P (Ω)dΩ =
∫ ∞

0
r2drdΩ |ψ(~x, t)|2

=
∫ ∞

0
r2dr

(
1

2πd2

)3/2 ∣∣∣f(~k′, ~k)
∣∣∣2 1

r2
e−(r−(h̄k/m)t)2/2d2

dΩ

=
1

2πd2

∣∣∣f(~k′, ~k)
∣∣∣2 dΩ. (31)

At the last step, we assumed that t is sufficiently large so that the integration
only for r > 0 can be approximated by a full Gaussian integral.

3.3 Scattering Cross Section

Now we are in the position to define the differential cross section. You wait
for a particle to enter the detector in the solid angle dΩ for each particle you
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put in. The useful quantity is to detect the scattered particle for the given
probability density of the particle you injected per unit area. The incoming
wave packet was given in Eq. (25), and had the density of

∫
dz|ψf (~x, t)|2 =

∫
dz
(

1

2πd2

)3/2

e−(~x−h̄~kt/m)2/2d2

=
1

2πd2
e−(x2+y2)/2d2

(32)

where we assumed that ~k is along the z-axis. At the location of the scatterer
x = y = 0, the density is 1/2πd2. Therefore, the probability of the scattered
particle to be detected at a given solid angle dΩ for a particle per area is

dσ

dΩ
= 2πd2P (Ω) =

∣∣∣f(~k′, ~k)
∣∣∣2 . (33)

This is the definition of the differential cross section. It is usually phrased
as the number of scattered particles in the solid angle dΩ per unit time per
unit luminosity , which is the number of particles injected per unit area per
unit time. Obviously two definitions are the same based on the probabilistic
interpretation of quantum mechanics.

The total cross section is simply the differential cross section integrated
over the entire solid angle

σ =
∫
dΩ

dσ

dΩ
. (34)

It is important to note, however, that the formula for the cross section does
not take the unscattered wave into account. Therefore, the differential cross
section at the forward direction is not the actual number of particles detected
there, but rather the number of scattered particles slightly off from the for-
ward direction extrapolated to the forward direction. The actual number of
particles detected at the forward direction should take both the unscattered
and scattered waves, and importantly their interference must be taken into
account. Because the total number of particles detected must equal the to-
tal number of particles injected, the scattered wave at the forward direction
should satisfy a special requirement. This is the optical theorem discussed
in the next section.

4 Optical Theorem

There are many ways to derive the optical theorem. Here we continue using
the wave packets and require that the normalization of the wave function
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should always satisfy
∫
d~x|ψ(~x, t)|2 = 1 for any t, as guaranteed by the uni-

tarity of time evolution operator e−iHt/h̄. This requirement leads to a special
requirement on the scattered wave, and hence f(~k′, ~k).

We start with the wave packet Eq. (26). When t� −md/h̄k (before the
scattering), the scattered wave vanishes as discussed in the previous section,
and hence the wave function is Eq. (28) which is properly normalized. On
the other hand, when t � md/h̄k (after the scattering), the wave packet is
Eq. (30), and its normalization is not obviously unity. We therefore require
that∫

d~x
(

1

2πd2

)3/2
∣∣∣∣∣ei~k·~xe−(~x−h̄~kt/m)2/4d2

+ f(~k′, ~k)
eikr

r
e−(r−(h̄k/m)t)2/4d2

∣∣∣∣∣
2

= 1.

(35)
The absolute square of the first term is also properly normalized as it is the
same as in the free case. Therefore, the cross term and the second term
absolute squared must cancel.

The second term absolute squared is obtained easily as∫
d~x
(

1

2πd2

)3/2
∣∣∣∣∣f(~k′, ~k)

eikr

r
e−(r−(h̄k/m)t)2/4d2

∣∣∣∣∣
2

=
(

1

2πd2

)3/2 ∫
dΩr2dr|f(~k′, ~k)|2 1

r2
e−(r−(h̄k/m)t)2/2d2

=
1

2πd2
σ, (36)

where σ is the total cross section Eq. (34). The cross term is slightly more
complicated but is straightforward to calculate. Note that it is important
only in the forward region where both the unscattered and scattered waves
coexist, and we can replace f(~k′, ~k) by f(0) = f(~k,~k). It is:∫

d~x
(

1

2πd2

)3/2

e−i~k·~xe−(~x−(h̄~k/m)t)2/4d2

f(0)
eikr

r
e−(r−(h̄k/m)t)2/4d2

+ c.c.

=
(

1

2πd2

)3/2 ∫
d cos θdφr2dr

1

r
f(0)eikr−ikr cos θ

e−(r2−(2h̄kr cos θ/m)t+(h̄k/m)2t2)/4d2

e−(r2−(2h̄kr/m)t+(h̄k/m)2t2)/4d2

+ c.c.

= 2π
(

1

2πd2

)3/2 ∫ ∞

0
drf(0)

1
2h̄kt
4md2 − ik[

e−(2r2−(4h̄kr/m)t+2(h̄k/m)2t2)/4d2 − e−(2r2+2(h̄k/m)2t2)/4d2

e2ikr
]
+ c.c.

(37)

10



The term 2h̄kt/4md2 in the denominator is negligible compared to k within
our assumption that the size of the wave packet does not grow significantly
(h̄t/md2 � 1) and can be dropped. The second term in the square bracket
is exponentially suppressed at large time compared to the first term where
the exponent vanishes at r = h̄kt/m. Therefore,

= 2π
(

1

2πd2

)3/2 ∫ ∞

0
dr
i

k
f(0)e−(r−(h̄k/m)t)2/2d2

+ c.c.

= −4π

k

1

2πd2
=f(0). (38)

Requiring that the second term absolute squared Eq. (36) and the cross term
Eq. (38) cancel exactly, we find

σ =
4π

k
=f(0). (39)

This is what is called the optical theorem.
The meaning of this theorem is clear. Because the scattered wave takes

the probability away to different directions, the total probability for the
particle to go to the forward direction (unscattered) should decrease. This
decrease is caused by the interference between the unscattered and scattered
waves and hence is proportional to f(0). On the other hand, the amount of
decrease in the forward direction should equal the total probability at other
directions, which is proportional to the total cross section.
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