
Final Exam Solutions

1. Pair production of electrons from two photons.

(a) I refer to the initial four-momentum of the cosmic ray photon by qµ1 and the photon
in the background qµ2 . The requirement for the pair production is (q1 + q2)2 =
2q1 · q2 > 4m2

e. We choose our coordinate system such that q1 is along the z-
axis, qµ1 = E1(1, 0, 0, 1). According to the assumption in the problem, photons
in the background have four-momenta qµ2 = E2(1, sin θ cosφ, sin θ sin φ, cos θ) with
E2 = 3×10−4 eV. 2q1 ·q2 = 2E1E2(1−cos θ), which is maximized when cos θ = −1.
Therefore the minimum energy is determined by (2q1 ·q2)max = 4E1E2 > 4m2

e, i.e.,
E1 > m2

e/E2 = (0.511 MeV)2/(3× 10−4 eV) = 8.70× 105 GeV = 870 TeV.

(b) I believe these are obvious.

(c) You always have the following common factors. The amplitude has two coupling

constants e2, the phase space
βf
8π

and the flux factor
1

2s
. The kinematical factors

in the amplitude are different between two cases. (i) Close to the threshold, the
wave functions of electron, positron are roughly ∼

√
m, and the t- or u- channel

electron propagators ( 6p+ m)/(p2 −m2) ∼ 1/m. The photon polarization vectors
are O(1). Therefore, the amplitude behaves as M∼ e2. The cross section then is

σ ∼ βf
8π

1

8m2
(e2)2 =

πα2βf
4m2

. (ii) Well above the threshold, the electron, positron

spinors are ∼
√

2E, while the electron propagator ∼ 1/E. Therefore the amplitude
is roughly M∼ 2e2. There is, however, an angular dependence of the amplitude,
which is actually M ∼ 2e2 sin(θ/2)/(1 − cos θ) or 2e2 cos(θ/2)/(1 + cos θ) which
gives us a logarithmic enhancement factor. We’ll put this back in at the very end.

Setting the angular dependence aside, we obtain σ ∼ 1

8π

1

2s
(2e2)2 =

4πα2

s
. Now we

put the logarithmic enhancement factor in, and the estimate is σ ∼ 4πα2

s
log

s

m2
.

(d) The amplitude is

iM = (−ie)2

(
ū(p)γµ

i

6k1 −m
γνv(p̄)εµ(q1)εν(q2)

+ ū(p)γµ
i

6k2 −m
γνv(p̄)εµ(q2)εν(q1))

)
(1)
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Here, k1 = p − q1 and k2 = p − q2. The relative sign between two amplitudes is
plus, because they are related by Bose symmetry, q1 ↔ q2.

(e) We calculated the spin-summed squared amplitude for the Compton scattering in
the class. For initial four-momenta pi (ki) of electron (photon), and similarly for
final ones, we found∑
helicities

|M|2

= 8e4

pi · kfpi · ki
+
pi · ki
pi · kf

+ 2m2

(
1

pi · ki
− 1

pi · kf

)
+m4

(
1

pi · ki
− 1

pi · kf

)2
 .(2)

Using crossing, we can obtain the spin-summed squared amplitude for γγ → e+e−

by substituting ki → q1, kf → −q2, pi → −p̄, pf → p, and changing the overall
sign.∑

helicities

|M|2

= 8e4

 p̄ · q2

p̄ · q1
+
p̄ · q1

p̄ · q2
+ 2m2

(
1

p̄ · q1
+

1

p̄ · q2

)
−m4

(
1

p̄ · q1
+

1

p̄ · q2

)2
 .(3)

The symmetry between q1 ↔ q2 in the result is apparent. What is less apparent
is the symmetry p↔ p̄: 2p̄ · q2 = p̄2 + q2

2 − (p̄− q2)2 = m2 + 0− (q1− p)2 = 2p · q1.
This symmetry holds thanks to the charge conjugation invariance of the QED
which interchanges electron (momentum p) and positron (momentum p̄) in the
final states, but does not affect the initial state.

(f) The total cross section is given by

σ =
(

1

2

)2 βf
8π

1

2s

∫
dΩ

4π

∑
helicities

|M|2 (4)

First, one needs to write out the inner products of four-momenta explicitly. Let
us use the center-of-momentum frame to simplify it. (Remember the total cross
section is Lorentz-invariant.) Use qµ1 = E(1, 0, 0, 1), qµ2 = E(1, 0, 0,−1), pµ =
(E, p sin θ, 0, p cos θ), p̄µ = (E,−p sin θ, 0,−p cos θ), with p = Eβ =

√
E2 −m2.

Here, we have chosen the rotational invariance to fix the p direction to lie in the
xz plane. Then, p̄ · q1 = E2 + Ep cos θ, p̄ · q2 = E2 − Ep cos θ. The spin-summed
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squared amplitude becomes

∑
helicities

|M|2 = 8e4

{
E2 −Ep cos θ

E2 + Ep cos θ
+
E2 + Ep cos θ

E2 − Ep cos θ

+2m2

(
1

E2 + Ep cos θ
+

1

E2 − Ep cos θ

)

−m4

(
1

E2 + Ep cos θ
+

1

E2 − Ep cos θ

)2
 . (5)

An integral of the terms inside the curly brackets over cos θ = −1 to 1 gives

−4E3 p− 4Em2 p+ (8E4 + 8E2m2 − 4m4) arctanh( p
E

)

E3 p
(6)

(Hey, I obtained a lot messier expression before; this is a lot simpler!) Therefore,

σ =
(

1

2

)2 βf
8π

1

2s

∫
d cos θ

2

∑
helicities

|M|2

=
1

4

βf
8π

1

2s
8e4 1

2

{
−4E3 p− 4Em2 p+ (8E4 + 8E2m2 − 4m4) arctanh( p

E
)

E3 p

}

=
e4βf
16πs

{
−4E3 p− 4Em2 p+ (8E4 + 8E2m2 − 4m4) arctanh( p

E
)

E3 p

}
(7)

We show a plot of the cross section in Fig. 1.

(g) The terms in the curly brackets have a limit 4 when p→ 0, E → m. Therefore,

σ =
e4βf
16πs

4 =
πα2βf
m2

. (8)

The estimate in (b) was a factor of four off. Not too bad.

(h) Let us use an approximate order of magnitude for the cross section, πα2/m2. The
mean free path due to a scattering with the background photons is roughly

l−1 ∼ πα2

m2
2
ζ(3)

π2
T 3

0 = 2.0× 10−33 MeV (9)

and using h̄c = 197 MeV fm (this is a useful constant to remember!)

l ∼ 9.7× 1021 cm = 3.15 kpc (10)
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Figure 1: The cross section of γγ → e+e− in the unit of barn 1 b = 10−24 cm2, as a
function of s = E2

CM .

This is somewhat shorter than the distance between the Earth and our galac-
tic center ∼ 8 kpc, but we cannot say it is definitely shorter because we made
only a crude estimate. To be more precise, we need to integrate over the Planck-
ian distribution of photon energies (and also directions). However, this is not
important anyway because there are many other and more important processes
which can scatter incoming photons inside the galactic disk. The background pho-
tons are important when there is basically “nothing” between the source and the
Earth, which is the case for an extragalactic source of high energy photons.1 The
calculated mean free path is much shorter than an intergalactic distance. There-
fore, ultra-high-energy gamma rays from extrargalactic sources are all converted
to electron-positron pairs due to scattering with microwave background photons.
Their fate is to cause showers due to electromagnetic cascades. The produced
eletron-positron pairs further lose energies by emitting breamsstrahlung photons,
or cause further pair production by scattering with microwave background pho-
tons, and result in a larger number of electrons, positrons, and photons in a narrow
cone. They are called “showers.” Such high energy photons, therefore, can still
be detected in a form of showers even though the primary photon itself won’t
reach the Earth directly. But this tells us that looking for photons (traditional
astronomy) wouldn’t be so useful at very high energies.

1To the best of my knowledge, whether there exist infrared radiations which may potentially scatter
the high-energy photons is not understood.
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Note Many of you asked what the heck ζ(3) is. This is a very standard outcome in
statistical mechanics of relativistic particles, but maybe you are not familiar with
it. The number density of a boson is given by

n = g
∫

d3~p

(2πh̄)3

1

eβ(E−µ) − 1
(11)

As usual, β = 1/kT . The factor g = 2 counts the spin degrees of freedom. Photons
do not have a chemical potential, and E = cp. Therefore,

n = g
∫

4πp2dp

(2πh̄)3

1

eβcp − 1
(12)

Now you expand the integrand in the following manner,

n = g
1

2π2h̄3

∫ ∞
0

p2dp
∞∑
n=1

e−nβcp (13)

Integrating each terms in the sum gives the Γ-function, and we obtain

n = g
1

2π2h̄3 Γ(3)
∞∑
n=1

1

(nβc)3
= g

(kT )3

π2(h̄c)3

∞∑
n=1

1

n3
(14)

The last factor is ζ(3) = 1.20206 . . . which is an irrational number like e or π. In
general, ζ(s) ≡ ∑∞n=1 n

−s Finally, we have

n = g
ζ(3)

π2

(
kT

h̄c

)3

(15)

I have further taken the natural unit, k = h̄ = c = 1 in the problem.

If you have a thermal gas of relativistic fermions, the only change in the above
calculation is that you have a sum over series with alternating signs,

1

eβcp + 1
=
∞∑
n=1

(−1)n−1e−nβcp (16)

The result of the phase space integral also has a sum over alternating signs,

n = g
1

π2(h̄c)3

∞∑
n=1

(−1)n−1

n3
(17)
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The summation can be done using the following trick.

∞∑
n=1

(−1)n−1

n3
=
∞∑
n=1

1

n3
− 2

(
1

23
+

1

43
+ · · ·

)
= ζ(3)− 2

1

23
ζ(3) =

3

4
ζ(3) (18)

Therefore,

n = g
3

4

ζ(3)

π2

(
kT

h̄c

)3

(19)

for relativistic fermions. You can also calculate the energy density in a similar
way. It helps to know that ζ(2) = π2/6. You obtain Stefan–Boltzman law of the
energy density of the black body radiation in this manner.
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2. beta-function in φ4 theory.

(a) The Feynman rule is that we put a factor of −iλ for each four-point scalar vertex.
The one-loop amplitude is

−iλ
2

∫
d4p

(2π)4

i

p2 −m2
(20)

The reason for 1/2 is the following. From the definition of the two-point function
in the interaction picture, the term at O(λ) is given by the correlation function,

〈0|Tφ(x)φ(y)
∫
d4z(−i) λ

4!
φ(z)4|0〉 (21)

There are four choices on which φ(z) is contracted with φ(x), and three more
choices on which of the remaining three φ(z) is contracted with φ(y). There still
remains two φ(z)’s, which are contracted with each other to give the above one-
loop amplitude. Therefore, the overall factor is

−i λ
4!
× 4× 3 = −iλ

2
(22)

It has an additional factor of 1/2 compared to a naive expectation. In general, a
loop amplitude which involves a real scalar by itself has an additional multiplicative
factor of 1/2.

The result does not depend on the four-momentum of the external line. Therefore,
it cannot contribute to the coefficient of q2 term in the 1PI two-point function, and
hence not to the wave-function renormalization. The wave function renormaliza-
tion appears only at the two-loop level in this theory. On the other hand, the above
one-loop amplitude renormalizes the mass of the scalar boson. From the power
counting, it is easy to see that it is quadratically divergent! This makes φ4 theory
very sensitive to physics at the ultraviolet cutoff. Not very nice. This is called the
“naturalness problem” and is relevant to the Higgs boson in the standard model.

(b) Call the initial four-momenta to be p1 and p2, and final ones p3 and p4. The
one-loop amplitude then is given by

iM =
1

2
(−iλ)2

∫ d4q

(4π)2

i

(q − p1 − p2)2 −m2

i

q2 −m2

+((p1 + p2)→ (p1 − p3)) + ((p1 + p2)→ (p1 − p4)) (23)
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Here again we have a multiplicative factor of 1/2. The reason is the same as the
above case. We need to calculate the four-point correlation function at O(λ2). It
comes from the following correlation function,

〈0|Tφ(x1)φ(x2)φ(x3)φ(x4)
1

2!

∫
d4z1(−i) λ

4!
φ(z1)4

∫
d4z2(−i) λ

4!
φ(z2)4|0〉 (24)

Here, the reason for 1/2! is because it is the second-order term in the Taylor

expansion of Te−i
∫
d4zHint. But this is not the reason for the final 1/2. First of all,

there are three different types of Wick contractions. One is to contract φ(x1) and
φ(x2) with the same z, say φ(z1)4, and φ(x3) and φ(x4) with φ(z2)4 (s-channel).
The other is to contract φ(x1) and φ(x3) with the same z (t-channel), the last
φ(x1) and φ(x4) with the same z (u-channel). This is why we have a sum of
three different terms. Now let us look at one particular contraction, where φ(x1)
and φ(x2) are contracted with the same z (s-channel diagram). First of all, there
are two choices, whether they are contracted with z1 or z2. Both of them give
the same amplitude, and they are added together. This factor of two cancels the
factor of 1/2! in the Taylor expansion. We pick z1 and drop the factor of 1/2!
hereafter. Now there are four choices on which φ(z1) to contract with φ(x1), and
three more on which remaining three φ(z1) to contract with φ(x2). At this point,
we have a factor of −iλ/4!∗4∗3 = −iλ/2. Exactly the same situation occurs with
the contraction of φ(x3), φ(x4) with φ(z2)4. At this point, two φ(z1)2 and φ(z2)2

remain uncontracted. They are contracted with each other, with two possibilities.
Therefore, the overall coupling constant factor is (−iλ/2)2 ∗ 2 = (−iλ)2/2. You
can check that exactly the same factor appears also for t-channel and u-channel
amplitudes.

(c) After setting all external momenta to vanish, we obtain

iM =
3

2
λ2
∫

d4p

(2π)4

(
1

p2 −m2

)2

(25)

because s-, t-, and u-channel amplitudes become the same. One way to evalu-
ate the amplitude is to use Pauli–Villars regulator with a mass M , and do the
following.

iM =
3

2
λ2
∫

d4p

(2π)4

( 1

p2 −m2

)2

−
(

1

p2 −M2

)2


=
3

2
λ2
∫

d4p

(2π)4

∫ M2

m2
dµ2(−2)

(
1

p2 − µ2

)3

(26)
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Now we perform the p integration first using the by-now-familiar formula,

iM =
3

2
λ2
∫ M2

m2
dµ2(−2)

(−1)3i

(4π)2

Γ(1)

Γ(3)

1

µ2

=
3

2
λ2(−2)

−i
(4π)2

Γ(1)

Γ(3)
log

M2

m2

= i
3

2

λ2

(4π)2
log

M2

m2
(27)

Another method is an explicit cutoff. Going back to Eq. (25), we first perfom the
Wick rotation and cutoff the momentum integration with p2

E < M2,

iM =
3

2
λ2i

∫
d4pE
(2π)4

(
1

p2
E +m2

)2

(28)

= i
3

2
λ2
∫ M2

0

π2p2
Edp

2
E

(2π)4

(
1

p2
E +m2

)2

(29)

The integration can be done in parts,

iM = i
3

2
λ2 1

(4π)2

p2
E

−1

p2
E +m2

∣∣∣∣∣
M2

0

−
∫ M2

0
dp2

E

−1

p2
E +m2


= i

3

2
λ2 1

(4π)2

(
−1 + log(p2

E +m2)
∣∣∣∞
0

)
= i

3

2
λ2 1

(4π)2

(
−1 + log

M2

m2

)
(30)

The results based on two different methods disagree on the constant term, but the
logarithmically divergent piece have the same coefficient.

(d) The calculated iM above is added to the bare couping −iλ0 at the lowest order,
and hence,

λ = λ0 −
3

2

λ2
0

(4π)2
log

M2

m2
(31)

According to the definition of the β-function in the problem,

β(λ) = −M2 dλ

dM2

∣∣∣∣∣
λ0

=
3

2

λ2

(4π)2
(32)

Here, we used the fact that the λ0 in the one-loop term can be replaced by λ up
to higher order corrections.
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Note In this problem, a couple of you asked me what is the momentum scale Q2 here
analogous to that in the effective QED coupling constant. The answer is some-
what complicated. The amplitude here depends on three kinematical variables,
s, t, and u. This is actually the one-particle-irreducible (1PI) four-point function
Γ(4)(p1, p2, p3, p4), or equivalently, Γ(4)(s, t, u). How you define an effective cou-
pling constant as a function of a single momentum scale Q2 is up to you. One
choice made in the textbook is s = t = u = −Q2, which is in the unphysical region,
i.e., such a kinematics never arises for an S-matrix element. But this is a popular
definition. Another choice is to use dimensional regularization and the so-called
MS renormalization scheme, which is also popular.

Whatever your definition is, the following is always true, which does not require
you to define the effective coupling constant as a function of a single kinemat-
ical variable. It is the repetition of the argument we did in the class. The
1PI four-point function is a function of external momenta, the bare coupling
constant, and the ultraviolet cutoff parameter M . To be more explicit, Γ(4) =
Γ(4)(s, t, u, λ0,M

2). Now we study the same function with a scaling of the four-
momenta, Γ(4)(eαs, eαt, eαu, λ0,M

2). In other words, we study the same 1PI four-
point function with all kinematical variables scaled by the same factor eα. If we ne-
glect the mass m, a dimensional analysis tells you that Γ(4)(eαs, eαt, eαu, λ0,M

2) =
Γ(4)(s, t, u, λ0, e

−αM2). Therefore,(
s
∂

∂s
+ t

∂

∂t
+ u

∂

∂u

)
Γ(4)(s, t, u, λ0,M

2) =
∂

∂α
Γ(4)(eαs, eαt, eαu, λ0,M

2)
∣∣∣
α=0

=
∂

∂α
Γ(4)(s, t, u, λ0, e

−αM2)
∣∣∣
α=0

= −M2 ∂

∂M2
Γ(4)(s, t, u, λ0,M

2) (33)

And (at least at the one-loop level) we find the last expression to be independent of
the kinematics s, t, or u. Therefore, what you have calculated is useful independent
of the precise definition of the effective coupling constant λ(Q2).

(e) (I am aware that this question was confusing.) In dimensional regularization
method, the bare coupling constant λ0 has a mass dimension of 2ε, where I take
the space-time dimension to be D = 4− 2ε. The one-loop amplitude in Eq. (25)
is now

iMµ2ε =
3

2
λ2

0

∫
dDp

(2π)D

(
1

p2 −m2

)2

=
3

2
λ2

0

i

(4π)2−ε
Γ(ε)

Γ(2)
(m2)−ε (34)
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using the formulae which we discussed in the class. The factor µ2ε is introduced to
make the amplitude M dimensionless, and µ is an arbitrary parameter with unit
mass dimension. By differentiating the total amplitude (with tree-level term)

λ = −M = λ0µ
−2ε − 3

2

λ2
0

(4π)2−εµ
−2εΓ(ε)(m2)−ε (35)

by µ2 with λ0 fixed,

β = µ2 dλ

dµ2
= λ0(−ε)µ−2ε − 3

2

λ2
0

(4π)2−ε (−ε)µ
−2εΓ(ε)(m2)−ε → 3

2

λ2

(4π)2
(36)

In the last part, we took the limit ε → 0, and used a perturbative expansion
λ0 = λµ2ε +O(λ2).

Note Usually we expand the amplitude in power series in ε,

λ = −M = λ0µ
−2ε − 3

2

(λ0µ
−2ε)2

(4π)2−ε

(
1

ε
− γ +O(ε

)(
m2

µ2

)−ε

λ0µ
−2ε − 3

2

(λ0µ
−2ε)2

(4π)2

(
1

ε
− γ + log(4π)− log

m2

µ2
+O(ε)

)
(37)

If you define the renormalized coupling constant λ(µ2) by absorbing the pole and
−γ + log(4π) pieces,

λ(µ2) = λ0µ
−2ε − 3

2

(λ0µ
−2ε)2

(4π)2

(
1

ε
− γ + log(4π)

)
(38)

it is called the MS coupling constant. This is scheme is very commonly used in
QCD.

Note This excercise is a “sloppy” way of calculating the β-funcion in dimensional regu-
larization, which works only at one-loop. I learnt this method from the book by
Ryder. Let me describe what the “correct” method is. As usual, we focus on the
1PI four-point function, Γ(4)(s, t, u, λ0) which is calculated with the bare coupling
λ0. Note that in the bare theory, Γ(4) has a mass dimension of 2ε. What we are
interested is the momentum dependence of the four-point function. We scale all
four-momenta by an overall common factor eα, and use the dimensional analysis,

Γ(4)(eαs, eαt, eαu, λ0) = eεαΓ(4)(s, t, u, e−εαλ0) (39)
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Now we define the “renormalized” four-point function by

Γ
(4)
R (s, t, u, λ) = µ−2ε(Z−1/2)4Γ(4)(s, t, u, λ0) (40)

which is dimension-less. Note that we regard the renormalized four-point function
as a function of λ, not λ0. Z is the wave-function renormalization factor. In our
case, it is unity at the one-loop level. Using the definition of ΓR and also the
dimensional analysis of Γ, we find

Γ
(4)
R (eαs, eαt, eαu, λ, µ2) = Γ

(4)
R (s, t, u, λ, e−αµ2) (41)

Therefore, the “correct” way is to fix λ, differentiate it with µ2 and change the
sign. However, it is equivalent to fixing λ0 and not changing the sign because the
amplitude is

λ2
0µ
−2ε(m2)−ε = λ2µ2ε(m2)−ε (42)

at this order.

(f) By writing down the differential equation,

Q2 dλ

dQ2
=

3

2

1

(4π)2
λ2 (43)

in a slightly different form,

dλ

λ2
=

3

2

1

(4π)2
d logQ2, (44)

both sides can be easily integrated and we obtain

− 1

λ(Q2
1)

+
1

λ(Q2
2)

=
3

2

1

(4π)2
log

Q2
1

Q2
2

, (45)

or,

λ(Q2
2) =

λ(Q2
1)

1− 3
2

λ(Q2
1)

(4π)2 log
Q2

2

Q2
1

(46)

Therefore, the coupling constant grows for larger energies, or descreases for smaller
energies: “infrared-free.” The situation is very similar to that in the QED. How-
ever, if we have such a theory with a relatively large size of λ at energy scale
directly observable by experiments, the coupling constant may diverge not too far
above such energy scales. If you require, for instance, that the coupling constant
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stays finite up to the Planck scale, you obtain an upper bound on the size of
λ(m2

Z), for instance.

Actually, the Higgs boson in the Standard Model has φ4-type coupling, and the
mass squared of the Higgs boson is proportional to coupling constant λ. Therefore,
an upper bound on λ translates into an upper bound on the Higgs boson mass. By
requiring that the coupling constant remains perturbative up to the Planck scale,
we obtain mH < 150 GeV or so.
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3. Electron Electric Dipole Moment.
The main point of this calculation is that the contribution vanishes if only φL (or

φR) propagates inside the vertex diagram because it would give a combination

ū(p′)
1 + γ5

2
· · · 1− γ5

2
u(p), (47)

and even if iσµνqν is obtained inside · · ·, it commutes with γ5 and the end result vanishes
because 1+γ5

2
1−γ5

2
= 0. Therefore, we need a diagram which starts with φL and ends with

φR or vice versa. This is why we need to use “vertex” −iAm or −iA∗m in the diagram.
If the diagram starts with φL and ends with φR, the structure of the amplitude becomes

ū(p′)
1− γ5

2
· · · 1− γ5

2
u(p), (48)

and iσµνqν term in · · · would survive. Given this point, and using the Feynman rule for
the scalar QED given in the book (p. 312), we find the following amplitude when φL is
emitted from the electron, converts to φR on the way and is absorbed by the electron:

iMLR =
∫

d4k

(2π)4
ū(p′)(−i

√
2e)

1− γ5

2

i

6k − µ(−i
√

2e)
1− γ5

2
u(p)[

i

(p′ − k)2 −M2
R

(−iA∗m)
i

(p′ − k)2 −M2
L

(−ie)(p + p′ − 2k)µ
i

(p− k)2 −M2
L

+
i

(p′ − k)2 −M2
R

(−ie)(p + p′ − 2k)µ
i

(p′ − k)2 −M2
R

(−iA∗m)
i

(p− k)2 −M2
L

]
.

(49)

First note that the photino propagator simplifies to

1− γ5

2

i

6k − µ
1− γ5

2
=

1− γ5

2

i( 6k + µ)

k2 − µ2

1− γ5

2
=

iµ

k2 − µ2

1− γ5

2
(50)

because {6k, γ5} = 0. We also assume ML = MR, and then

iMLR = 2e3A∗mµū(p′)
1− γ5

2
u(p)

∫
d4k

(2π)4[
(p+ p′ − 2k)µ

[(p′ − k)2 −M2]2[(p− k)2 −M2]
+

(p+ p′ − 2k)µ

[(p′ − k)2 −M2][(p− k)2 −M2]2

]
1

k2 − µ2
.

(51)
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We use Feynman parameter integral to simplify the integrand as usual. By using
the identity

1

abc
= 2

∫ 1

0
d3zδ(1− z1 − z2 − z3)

1

[z1a + z2b+ z3c]3
, (52)

we act −∂/∂b on both sides and find

1

ab2c
= 6

∫ 1

0
d3zδ(1− z1 − z2 − z3)

z2

[z1a+ z2b+ z3c]4
. (53)

Since the integrand we have has the form 1
ab2c

+ 1
abc2

, we use

1

ab2c
+

1

abc2
= 6

∫ 1

0
d3zδ(1− z1 − z2 − z3)

z2 + z3

[z1a+ z2b+ z3c]4
. (54)

∫
d4k

(2π)4

[
(p+ p′ − 2k)µ

[(p′ − k)2 −M2]2[(p− k)2 −M2]
+

(p+ p′ − 2k)µ

[(p′ − k)2 −M2][(p− k)2 −M2]2

]
1

k2 − µ2

=
∫

d4k

(2π)4
6
∫ 1

0
d3zδ(1− z1 − z2 − z3)

(z2 + z3)(p+ p′ − 2k)µ

[k2 − 2z2p′ · k − 2z3p · k −M2]4
(55)

where we ignored (p′)2 = p2 = m2 � M2 in the denominator and set µ2 = M2. We
shift k → k + 2z2p

′ + 2z3p, and we ignore 2p′ · p = 2m2 − q2 �M2 in the denominator

=
∫ d4k

(2π)4
6
∫ 1

0
d3zδ(1− z1 − z2 − z3)

(1− z1)((1− 2z3)p+ (1− 2z2)p′ − 2k)µ

[k2 −M2]4
. (56)

d4k integration can be done using the general formula, and we find

=
∫ 1

0
d3zδ(1− z1 − z2 − z3)

i

(4π)2

(1− z1)((1− 2z3)p+ (1− 2z2)p′)µ

(M2)2
. (57)

Now the integration volume is symmetric under z2 ↔ z3, and we can replace (1− 2z3)
by [(1− 2z3) + (1− 2z2)]/2 = 1− z2 − z3 = z1. Therefore,

=
∫ 1

0
dz1

∫ 1−z1

0
dz2

i

(4π)2

(1− z1)z1(p+ p′)µ

(M2)2
=

i

(4π)2

1

12M4
(p+ p′)µ. (58)

By combining with the prefactors (and setting µ = M), we find

iMLR = 2e3A∗mM
i

(4π)2

1

12M4
ū(p′)

1− γ5

2
u(p)(p+ p′)µ. (59)
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Now we use Gordon decomposition technique. As done in the class, we know that

mγµu(p) = pµu(p)− iσµνpνu(p),

ū(p)mγµ = ū(p)pµ + ū(p)iσµνpν .

Therefore,

ū(p′)
1− γ5

2
u(p)(p+ p′)µ

= ū(p′)
1− γ5

2
(mγµ + iσµνpν)u(p) + ū(p′)(mγµ − iσµνp′ν)

1− γ5

2
u(p)

= γµ piece + ū(p′)
1− γ5

2
(−iσµνqν)u(p). (60)

We used q = p′ − p. The last piece is of our interest. We now find

iMLR = 2e3A∗mM
i

(4π)2

1

12M4
ū(p′)

1− γ5

2
(−iσµνqν)u(p). (61)

Another amplitude of creating φR first and absorbing φL is obtained by simple re-
placements, 1−γ5

2
→ 1+γ5

2
, A∗m→ Am. Therefore, the total is given by

iMtotal = 2e3m
i

(4π)2

1

12M4
ū(p′)(−iσµνqν)(ReA + iγ5ImA)u(p)

= i
α

4π

m

M3

e

6
ū(p′)(−iσµνqν)(ReA+ iγ5ImA)u(p). (62)

Now comes the interpretation of this amplitude as the electric dipole moment of the
electron. First notice that the amplitudes can be regarded as the matrix element of an
effective Feynman rule −iHeff . We focus on the σµνγ5 piece. The effective Hamiltonian
can be read off as

〈p′|Heff |p〉 =
α

4π

m

M3

e

6
ū(p′)(iσµνqν)(iγ5ImA)u(p)Aµ(q). (63)

Here, Aµ(q) is the vector potential in the momentum space. Since we are applying an
electric field, let us take A0 6= 0 and other components zero. Then the matrix we need
to understand is σ0iγ5. Taking Pauli–Dirac representation suitable for non-relativistic
limit, we find

σ0iγ5 = iγ0γiγ5 = iαiγ5 = i

(
0 σi

σi 0

)(
0 1
1 0

)
=

(
iσi 0
0 iσi

)
. (64)
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Non-relativistic electron states occupy only the upper two components, and we keep
only iσi in our expression. Then

〈p′|Heff |p〉 =
α

4π

m

M3

e

6
ImA ū(p′)σiu(p) iqiA0(q). (65)

Since iqiA0 = −iqiA0 = −∇iA0 = Ei, the matrix element is then

〈p′|Heff |p〉 = ū(p′)
[
α

4π

m

M3

e

6
ImA~σ · ~E

]
u(p). (66)

Clearly this is an electric dipole moment

de =
α

4π

m

M3

e

6
ImA. (67)

Taking A = Meiφ, we can write ImA = M sinφ.

de =
α

4π

m

M2

e

6
sinφ = 9.76× 10−28e cm× sin φ

(
TeV

M

)2

. (68)

From Gene’s result de = (0.18 ± 0.12 ± 0.10) × 10−26e cm, we combine statistical and

systematic errors in quadrature
√

(0.12)2 + (0.10)2 = 0.16. Taking 95% confidence level

(i.e., two sigma), we find |de| < 0.50 × 10−26e cm. Comparing this to the expression
found from supersymmetry above, we conclude

M > 440 GeV(sinφ)1/2. (69)

If the phase of A is order unity sinφ ∼ 1. This is actually one of the most stringent
constraints on supersymmetry.
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