
Take-home Final Exam, due Dec 10, 12:40 pm sharp

1. Pair production of electrons from two photons. There are photons in cosmic rays
of extragalactic origin with incredibly high energies, well beyond TeV. The extremely high
energy ones, however, do not reach the Earth because they scatter with the photons in the
microwave background to produce electron-positron pairs. Let us study such an effect. We
denote the four-momenta of two initial photons by q1 and q2, and the final electron (positron)
by p (p̄).

(a) Kinematics question. What is the minimum energy of the incident photon in order to
produce an electron-positron pair? Assume a typical photon in the cosmic microwave
background has an energy of 3×10−4 eV. (Actually, the minimum energy is much lower
than this estimate because of the tail in the Planck distribution.)

(b) Draw two Feynman diagrams for γγ → e+e−.

(c) Make an estimate of the cross section at (i) threshold s ∼ 4m2, and at (ii) high energy
s� 4m2, using the simple method I described in the class. You are supposed to obtain
factors of coupling constant, π and mass (i) or energy (ii) dependence correctly.

(d) Write down the amplitudes for each Feynman diagrams. What is the relative sign
between the two amplitudes?

(e) Obtain the spin-summed squared amplitude. (Actually, you don’t need to calculate this;
use a trick to obtain it from one of the cross sections we calculated in the class.)

(f) Calculate the total cross section as a function of s. (The result is quite messy.) Plot it
as a function of s.

(g) Take a limit s→ 4m2 and compare the expression with what you obtained in (c).

(h) Assume that the cosmic microwave background consists of photons with energy E = kT0

(which is, of course, an oversimplification) and number density n = 2(ζ(3)/π2)T 3
0 with

T0 = 2.726 K. What is the mean free path of the incident photon in the units of kpc?
An order of magnitude estimate is enough.

2. beta-function in φ4 theory. The Lagrangian of the φ4 theory is given by

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − 1

4!
λφ4. (1)

Here, φ is a real Klein–Gordon scalar field of mass m. The only interaction in this theory is
the vertex among four scalar lines with the Feynman rule −iλ.
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(a) Write down the one-loop amplitude for the scalar two-point function. (Hint: you need
to be careful about combinatoric factors. It is the easiest if you go back to the Wick’s
theorm. You will find a multiplicative factor of 1/2 compared to the normalization you
expect naively from the Feynman rule. ) Show that this amplitude does not generate
wave-function renormalization. This diagram gives quadratically (!) divergent mass
renormalization.

(b) Write down the one-loop amplitude for the scalar four-point function. (Hint: there are
three diagrams.)

(c) We are interested only in the ultraviolet divergent part to calculate the four-point func-
tion. Therefore, you can set the four-momenta of external lines vanishing. To obtain
the logarithmically divergent piece, you can do either of the following two: (1) subtract
the same amplitude with Pauli–Villars mass M , or (2) do the Wick rotation first, and
cutoff the momentum integration at k2

E < M2. In either case, you should keep the mass
m in your calculation.

(d) Calculate the beta-function β(λ) = −M2dλ/dM2 where you differentiate λ with the
bare coupling λ0 fixed.

(e) Use the dimensional regularization to perform the loop integral, with all external four-
momenta neglected but with the mass of the scalar kept. Write the four-point amplitude
using the bare couping λ0 and an arbitrary dimensionful parameter µ. (The expression
is λ = λ0µ

−2ε + O(λ0µ
−2ε)2 in D = 4 − 2ε dimension. You have calculated the second

piece.) Calculate β = µ2dλ/dµ2 where you differentiate λ with the bare coupling λ0

fixed, and the limit ε→ 0 is taken after the differentiation. Terms of O(λ3) are neglected
in β.

(f) Integrate the beta function to obtain the behavior of the running coupling constant
λ(Q2). Is it asymptotically-free (decreasing with energy) or infrared-free (increasing
with energy)?

3. Electron Electric Dipole Moment In supersymmetric theories, it is possible that the
electron acquires an electric dipole moment from the loop diagram of selectrons (superpartner
of electron) and photino (superpartner of photon). The kinetic terms are as usual,

L0 = −1

4
FµνF

µν + ψ̄(i6D−µ)ψ+ λ̄(i6∂−m)λ+Dµφ
∗
LD

µφL−M2
Lφ
∗
LφL+Dµφ

∗
RD

µφR−M2
Rφ
∗
RφR

(2)
where ψ is the electron field, λ the photino field (spinor), and φL,R the left-handed (right-
handed) selectron field (Klein–Gordon fields). The QED Feynman rules for the Klein–Gordon
fields are given in Problem 9.1 of the book. The new interactions of the photino, selectron
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and electron are given by

Lint = −Amφ∗LφR −A∗mφ∗RφL

−
√

2e λ̄
(

1 + γ5

2
φ∗R +

1− γ5

2
φ∗L

)
ψ −
√

2e ψ̄
(

1 + γ5

2
φL +

1− γ5

2
φR

)
λ. (3)

Calculate the one-loop amplitude of the type

¯u(p′)qνσ
µνγ5u(p), (4)

assuming ML = MR = µ = A = MSUSY � m. Show that this amplitude corresponds
to the electric dipole moment of the electron. Using the result by Gene Commins’ group
de = (0.18 ± 0.12 ± 0.10) × 10−26e cm, place a lower bound on the superparticle mass scale
MSUSY . It simplifies the calculation drastically if you treat the terms with A parameter as
“interactions” with the Feynman rule −iAm and −iA∗m rather than the mass terms, and
use them only once in the diagram.
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