
Notations

The Dirac γ-matrices in the Weyl representation are defined by

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi

−σi 0

)
, (1)

or with a short-hand notation

γµ =

(
0 σµ

σ̄µ 0

)
(2)

with σµ = (1, ~σ) and σ̄µ = (1,−~σ). They satisfy the Clifford algebra,

{γµ, γν} = 2gµν . (3)

The two-component helicity eigenspinors (~σ·~p)χ±(~p) = ±|~p|χ±(~p) are defined
by

χ+(~p) =

(
cos θ

2

sin θ
2
eiφ

)
, χ−(~p) =

(
− sin θ

2
e−iφ

cos θ
2

)
, (4)

for ~p = |~p|(sin θ cosφ, sin θ sinφ, cos θ). The solution to the free Dirac equa-
tion is given by

ψ(x) =
∫
dp̃
∑
±

(u±(p)a±(p)e−ip·x + v±(p)b†±(p)eip·x), (5)

with
∫
dp̃ =

∫
d3p/(2π)32Ep, and

u+(p) =

( √
E − p√
E + p

)
χ+(~p), (6)

u−(p) =

( √
E + p√
E − p

)
χ−(~p), (7)

v+(p) =

(
−
√
E − p√
E + p

)
χ+(~p), (8)

v−(p) =

( √
E + p

−
√
E − p

)
χ−(~p). (9)
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The mode operators satisfy the anti-commutation relations

{ai(p), aj(q)} = 0, (10)

{a†i(p), a†j(q)} = 0, (11)

{ai(p), a†j(q)} = (2π)32Epδ
3(~p− ~q)δij , (12)

{bi(p), bj(q)} = 0, (13)

{b†i (p), b†j(q)} = 0, (14)

{bi(p), b†j(q)} = (2π)32Epδ
3(~p− ~q)δij , (15)

with i, j = ± and create the following states:

helicity +1/2 −1/2

particle a†+ a†−
anti-particle b†− b†+

(16)

It is also useful to define a matrix

γ5 =

(
−1 0
0 1

)
(17)

which anti-commutes with all γµ: {γ5, γµ} = 0. In the massless limit E → p,
the solutions satisfy

γ5u±(p) = ±u±(p), (18)

γ5v±(p) = ±v±(p), (19)

and the eigenvalue of γ5 is called chirality . The projection operators P± =
(1± γ5)/2 single out solutions with a definite chirality.
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HW #3, due Sep 20

1. The non-relativistic limit and g-factor. We discuss the non-relativistic
limit of a Dirac field in the following steps. First, we employ the Pauli–Dirac
representation of the Dirac γ-matrices; e.g., γi are the same as in Weyl rep-
resentation, but

γ0 =

(
1 0
0 −1

)
. (1)

This representation makes it easier to take the non-relativistic limit. We also
would like to include a vector potential so that we can derive the g-factor of a
Dirac particle. For this purpose, replace all spatial derivatives ~∇ by ~∇− ie ~A.

(1) Check that the Clifford algebra {γµ, γν} = 2gµν is satisfied with the γ0

matrices in Pauli–Dirac representation.

(2) Write the Dirac equation using

ψ =

(
φ
χ

)
, (2)

with φ and χ both two-component spinors.

(3) Rewrite the equation using ψ′ = ψeimt and χ′ = χeimt.

(4) Assume φ′ is O(1), and χ′ is O(v)� 1, where v = p/m is the velocity.
Obtain an approximate solution for χ′ at O(v). (Hint: φ′ behaves as

∼ e−iEt+imt ∼ e−i
1
2
mv2t, and hence i∂/∂t is only of O(mv2).)

(5) By eliminating χ′ using the above solution, obtain the following equa-
tion,

i
∂

∂t
φ′ =

[
~σ · (−i~∇− e ~A)

]2
2m

φ′ +O(mv3). (3)

(6) Use the identity σiσj = δij + iεijkσk and rewrite the equation in the
form

i
∂

∂t
φ′ =

(−i~∇− e ~A)2

2m
φ′ − g e

2m

~σ

2
· ~B +O(mv3). (4)

What is g?
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2. Helicity. We would like to see the helicities of each states a†±(p)|0〉 and
b†±(p)|0〉. Following the Noether procedure, we know that there are conserved
angular momentum operators,

~J =
∫
d3x : ψ†

(
−i~x× ~∇+

~σ

2

)
ψ : (5)

Here, :: indicates the normal ordering, i.e., the annihilation operators are
moved to the right while the creation operators to the left using the anti-
commutation relations.

(1) Show that

( ~J · ~P )a†±(p)|0〉 = ±1

2
|~p|a†±(p)|0〉. (6)

Here, the momentum operator ~P has an eigenvalue ~p on this state.
(Hint: ~x × (−i~∇) part vanishes in the end using various δ-functions
and the fact (~x× ~p) · ~p = 0.)

(2) Show that

( ~J · ~P )b†±(p)|0〉 = ∓1

2
|~p|b†±(p)|0〉. (7)

(3) Imagine a particle with a positive helicity as an object spinning around
its momentum direction clockwise. Suppose you try to “catch up”
with the particle. When you pass the particle by and look “back” at
it, what helicity do you observe? Using this example, can you explain
why do you need two states with opposite helicities (each for particle
and anti-particle)?

(4) If a Dirac particle is massless, the upper two and lower two components
do not couple in the Lagrangian, and hence you can remove a half, say,
lower two components. Write down the Lagrangian using only two
components. (Such a field is called a Weyl field.)

(5) Using the free particle solutions to the Dirac equation, show that a
Weyl field contains only u−(p) and v−(p) solutions.

(6) What helicity does a particle or anti-particle state have? Why does it
not contradict with the discussion in (3)?
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