
Feynman parameter integrals

We often deal with products of many propagator factors in loop integrals. The trick is to
combine many propagators into a single fraction so that the four-momentum integration can
be done easily. This is done commonly using so-called Feynman parameters.

We rewrite the product of propagators

1

(A1 + iε)(A2 + iε) · · · (An + iε)
, (1)

where Ai has the form of p2−m2. The sign of Ai is not fixed, but the imaginary part has the
fixed sign because of iε. This turns out to be useful.

A single propagator can be rewritten using a simple integral

1

A
= −i

∫ ∞
0

dteit(A+iε). (2)

The surface term at t→∞ vanishes because of iε term. Using this multiple times, we find

1

(A1 + iε)(A2 + iε) · · · (An + iε)
= (−i)n

∫ ∞
0

dt1 · · · dtnei
∑n

i
ti(Ai+iε). (3)

Here comes another trick. We use the identity

1 =
∫ ∞

0

dλ

λ
δ

(
1− 1

λ

n∑
i

ti

)
. (4)

This can be shown using the general formula δ(f(x)) = δ(x−x0)/|f ′(x0)| where x0 is the zero
of f(x), i.e., f(x0) = 0. The delta function in the above integral therefore can be rewritten
as

δ

(
1− 1

λ

n∑
i

ti

)
=
δ(λ−∑n

i ti)
1
λ2

∑n
i ti

= λδ(λ−
n∑
i

ti), (5)

and the integration can be done trivially to yield unity. We used the fact that all of ti in
Eq. (3) are positive to limit the λ integration above zero.

Inserting the unity Eq. (4) into Eq. (3), we find

1

(A1 + iε)(A2 + iε) · · · (An + iε)
= (−i)n

∫ ∞
0

dt1 · · · dtn
dλ

λ
δ

(
1− 1

λ

n∑
i

ti

)
ei
∑n

i
ti(Ai+iε). (6)

Now we change the variables from ti to ti = λxi, and find

= (−i)n
∫ ∞

0
dx1 · · · dxndλλn−1

(
1−

n∑
i

xi

)
ei
∑n

i
λti(Ai+iε). (7)

Now the λ integral can be done by using the integral representation of the gamma function

Γ(n) = (n− 1)! =
∫ ∞

0
dt tn−1e−t. (8)
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This expression can be generalized to the following one

(n− 1)!
1

Xn
=
∫ ∞

0
dt tn−1e−tX (9)

as long as Re(X) > 0 so that the integral converges. Because Re(−i(A+ iε)) = ε > 0, we find

1

(A1 + iε)(A2 + iε) · · · (An + iε)
= (−i)n

∫ ∞
0

dx1 · · · dxn
(n− 1)!

(−i∑n
i ti(Ai + iε))n

δ

(
1−

n∑
i

xi

)
.

(10)
Finally, note that all xi are positive while the sum of xi must be unity. Therefore the inte-
gration region can be limited to 0 < xi < 1:

1

(A1 + iε)(A2 + iε) · · · (An + iε)
= (n− 1)!

∫ 1

0
dx1 · · · dxn

1

(
∑n
i ti(Ai + iε))n

δ

(
1−

n∑
i

xi

)
.

(11)
The simple cases of n = 2, 3 are

1

(A1 + iε)(A2 + iε)
=
∫ 1

0

dx

(x(A1 + iε) + (1− x)(A2 + iε))2
, (12)

1

(A1 + iε)(A2 + iε)(A3 + iε)
= 2

∫ 1

0

dx dy dz δ(1− x− y − z)
(x(A1 + iε) + y(A2 + iε) + z(A3 + iε))3

. (13)
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General Ideas on the Self-energy Diagrams

We calculate the two-point function G2(x− y) = 〈Ω|ψ(x)ψ̄(y)|Ω〉 in perturbation theory.
An important point is to realize is that the full two-point function can be obtained once one
has all the 1PI (one particle irreducible) diagrams −iΣ( 6p) computed because

G2( 6p) ≡
∫
d4xG2(x− y)eip·(x−y)

=
i

6p−m0
+

i

6p−m0
(−iΣ( 6p)) i

6p−m0
+

i

6p−m0
(−iΣ( 6p)) i

6p−m0
(−iΣ( 6p)) i

6p−m0
+ · · ·

=
i

6p−m0 − Σ( 6p) . (14)

Here, m0 is the “bare” mass in the Lagrangian which is different from the physical (kinetic)
mass.

To correctly identify the mass of the particle, we look for the zero of the denominator in
the two-point function. We define the physical mass m of the particle by the equation

6p−m0 − Σ( 6p)| 6p=m = m−m0 − Σ(m) = 0. (15)

Then we expand the self-energy diagram Σ( 6p) around 6p = m as

Σ( 6p) = δm− (Z−1
2 − 1)(6p−m) + Z−1

2 ΣR( 6p), (16)

with δm = Σ(m), (Z−1
2 − 1) = −∂Σ( 6p)/∂ 6p| 6p=m, and ΣR( 6p) behaves as O( 6p − m)2 when

6p→ m. Then the two-point function becomes

G2( 6p) =
i

6p−m0 − δm+ (Z−1
2 − 1)(6p−m0)− Z−1

2 ΣR( 6p) =
iZ2

6p−m− ΣR( 6p) , (17)

with m = m0 + δm. Therefore, δm is interpreted as the correction to the mass of the
particle due to interactions, and this is why these diagrams are called “self-energy” diagrams.
The factor Z2 is called the wave-function renormalization factor which describes the strength
(square root of the probability) of the field operator ψ creating the one-particle state. At
the lowest order in perturbation theory Z2 = 1, but is different from unity once higher order
corrections are taken into account. This is the factor that appears in the LSZ reduction
formula.
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Explicit Calculation of the One-loop Self-energy Diagram

At the one-loop level, the self-energy diagram is given by

− iΣ( 6p) = (−ieγµ)
∫ d4k

(2π)4

i

6p+ 6k −m0 + iε

−igµν
k2 + iε

(−ieγν). (18)

This integral, however, is divergent both in the ultraviolet k →∞ and the infrared k → 0. To
deal with these divergences, we regulate the integral, i.e., introduce parameters which make
the integral formally convergent, but the parameters must be taken to zero or infinity at the
end of calculations. There are many ways of regularizing the integrals, but we adopt the
following prescription for this purpose:

1

k2 + iε
→ 1

k2 − µ2 + iε
− 1

k2 − Λ2 + iε
=

µ2 − Λ2

(k2 − µ2)(k2 − Λ2)
. (19)

In the end we take the limit µ → 0 and Λ → ∞ to recover the original expression, but the
integral becomes finite as long as we keep both µ and Λ finite. They are called infrared or
ultraviolet cutoffs. Below, we often drop iε terms but it is understood that they are always
there.

The regularized form is then

− iΣ( 6p) = −e2
∫ d4k

(2π)4

γµ( 6p+ 6k +m0)γµ
(p+ k)2 −m2

0

µ2 − Λ2

(k2 − µ2)(k2 − Λ2)
. (20)

The next step is to use Feynman parameters to combine three propagator factors and simplify
the numerator by the identity γµ 6aγµ = −2 6a,

− iΣ( 6p) = −e22
∫ 1

0
dxdydzδ(1− x− y − z)∫

d4k

(2π)4

(−2( 6p + 6k) + 4m0)(µ
2 − Λ2)

[x((p+ k)2 −m2
0) + y(k2 − µ2) + z(k2 − Λ2)]3

. (21)

The denominator can be simplified using x+ y + z = 1 to

denom = [k2 + 2xk · p + xp2 − xm2
0 − yµ2 − zΛ2]3

= [(k + xp)2 + x(1− x)p2 − xm2
0 − yµ2 − zΛ2]3. (22)

By shifting the integration variable kµ → kµ − xpµ, we find

− iΣ( 6p) = −e22
∫ 1

0
dxdydzδ(1− x− y − z)∫

d4k

(2π)4

(−2((1− x) 6p + 6k) + 4m0)(µ
2 − Λ2)

[k2 + x(1− x)p2 − xm2
0 − yµ2 − zΛ2]3

. (23)
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The 6k term in the numerator can be dropped because it is an odd function of kµ and vanishes
upon d4k integration.

The next step is to perform d4k integration. We need to work out a general formula

∫
d4k

(2π)4

1

(k2 −M2 + iε)3
=
−i

(4π)2

1

2

1

M2 − iε . (24)

Here we recovered iε term because it is important. To show this, we first focus on k0 inte-

gration. The (triple) poles are located at k0 = ±
√
~k2 +M2 − iε and hence the pole with +

sign is below the real axis, and that with − sign is above the real axis. Since the integrand
goes to zero sufficiently fast at the infinity |k0| → ∞ on the complex k0 plane, the integration
contour can be rotated from k0 ∈ (−∞,∞) to k0 ∈ (−i∞, i∞) without hitting the poles.
This is called Wick rotation. Then we can change the integration variable k0 = ik4 such that
the new variable ranges in (−∞,∞). Then the above integral is rewritten as

∫
d4k

(2π)4

1

(k2 −M2 + iε)3
= i

∫
d4kE
(2π)4

1

(−k2
E −M2 + iε)3

. (25)

Here, d4k = dk0d~k, d4kE = dk4d~k, and k2
E = (k4)2 + ~k2 = −(k0)2 + ~k2 = −k2. Now that

the denominator is positive definite (no poles along the integration contour), we do not have
to worry about iε in performing integration. We then use the polar coordinates for four-
dimensional kµE and the integration volume is d4kE = 2π2k3

EdkE = π2k2
Edk

2
E after integrating

over three angle variables. (In general, dnx = 2πn/2

Γ(n/2)
xn−1dx.) Then the integral becomes quite

simple,

=
−iπ2

(2π)2

∫ ∞
0

dk2
Ek

2
E

1

k2
E +M2 − iε . (26)

The k2
E integration can be done in parts and we find Eq. (24).

Now going back to Eq. (23), we can perform d4k integration using Eq. (24) and find

− iΣ( 6p) = −e2
∫ 1

0
dxdydzδ(1− x− y − z) −i

(4π)2

(−2(1− x) 6p+ 4m0)(µ
2 − Λ2)

xm2
0 + yµ2 + zΛ2 − x(1− x)p2 − iε . (27)

The integration over z can be done trivially using the delta function,

− iΣ( 6p) = −e2
∫ 1

0
dx
∫ 1−x

0
dy
−i

(4π)2

(−2(1− x) 6p+ 4m0)(µ
2 − Λ2)

xm2
0 + yµ2 + (1− x− y)Λ2 − x(1− x)p2 − iε . (28)

Note that the integration region of y is now limited as [0, 1− x] because of the delta function
constraint x+ y + z = 1 and z > 0. The integration over y is also a simple logarithm and we
find

− iΣ( 6p) =
−ie2

(4π)2

∫ 1

0
dx(−2(1− x) 6p+ 4m0) log

xm2
0 + (1− x)Λ2 − x(1− x)p2 − iε

xm2
0 + (1− x)µ2 − x(1− x)p2 − iε . (29)
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Even the integration over x can be done with elementary functions only, but the expression
becomes lengthy and not very inspiring and therefore we keep x integration. Finally using
α = e2/4π,

Σ( 6p) =
α

4π

∫ 1

0
dx(−2(1− x) 6p+ 4m0) log

xm2
0 + (1− x)Λ2 − x(1− x)p2 − iε

xm2
0 + (1− x)µ2 − x(1− x)p2 − iε . (30)

Following the general discussions, we now identify δm and Z2. Since Σ( 6p) and hence
δm = m−m0 are O(e2), I can replace m0 in Σ( 6p) by m by neglecting O(e4) corrections.

First, δm = Σ( 6p)| 6p=m is given by

δm = Σ( 6p)| 6p=m =
α

4π

∫ 1

0
dx(−2(1− x)m+ 4m) log

xm2 + (1− x)Λ2 − x(1− x)m2 − iε
xm2 + (1− x)µ2 − x(1− x)m2 − iε

= m
α

4π

∫ 1

0
dx2(1 + x) log

x2m2 + (1− x)Λ2 − iε
x2m2 + (1− x)µ2 − iε . (31)

The argument of the logarithm is manifestly positive, and we can safely drop iε. Moreover,
we take the limit Λ → ∞ and µ → 0 in the end, and we can neglect x2m2 in the numerator
and (1− x)µ2 in the denominator. Then the expression becomes drastically simpler and the
end result is

δm = m
α

4π

[
3 log

Λ2

m2
+

3

2

]
. (32)

This is the correction to the mass of the electron.
The interpretation of this self-energy is quite interesting. In classical electrodynamics, we

actually have a linearly-divergent self-energy. An electron creates a Coulomb field around it,
and it feels its own Coulomb field. If, for instance, one imagines the electron to be a sphere
of radius re with a uniform charge density, the total potential energy is V = 3

5
e2

re
. The total

energy of the electron is the sum of the rest energy m0c
2 and the potential energy V and

hence the “total” mass of the electron we observe is given by

mc2 = m0c
2 +

3

5

e2

4πre
. (33)

In the limit of re → 0, the bare mass m0 needs to be sent negative to cancel the linearly
divergent Coulomb self-energy to obtain the observed mass of the electron. In the quantum
mechanical language, cleary this is an “ultraviolet” divergence as it corresponds to short-
distance physics re → 0. If we imagine the electron to be as small as the Planck size re =√
h̄GN/c3 = 1.6 × 10−33 cm, where presumably the quantum gravity takes over physics, we

need to make the bare mass as negative as −5.34 × 1019 MeV which is cancelled by the
self-energy for 20 digits to get 0.511 MeV. This is absurd. The classical electrodynamics
therefore breaks down at the distance scale where the rest energy and the self-energy become
comparable, re ' e2/mc2 ' 10−13 cm, and a better (deeper) theory needs to take over the
classical electrodynamics below this distance scale.
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What we have learnt here is that the situation in the QED is much better. The total mass
of the electron is

mc2 = m0c
2

(
1 +

α

4π

[
3 log

Λ2

m2
+

3

2

])
. (34)

The ultraviolet cutoff Λ corresponds to the inverse “size” of the electron in the classical
language. Again if we imagine the electron to be as small as the Planck size, the correction
to the electron mass is only 18.0%. The crucial difference from the classical theory is that
(1) the dependence on the “size” of the electron is only logarithmic instead of power, and (2)
the correction is proportional to the electron mass itself and hence can never be much larger
than the bare mass. Compared to the classical case Eq. (33), the quantum result Eq. (34)
corresponds to the cutoff re ' h̄/mc which is nothing but the Compton wave length. Below
this distance scale, quantum effects are essential and the classical theory does not apply any
more.

There are several lessons to be learnt from this discussion. First, the QED knows its
own limitation by the fact that it requires the ultraviolet cutoff to regulate the theory. The
theory does not apply beyond certain energy scale. Such a theory is called an “effective
field theory,” and is true to almost all quantum field theories. However, the cutoff can be
extremely large unlike in the classical electrodynamics. Even though the QED should be
regarded as a theory which should be taken over by a yet deeper theory at extreme high
energies, its applicability is practically infinite. Second, even though there is an ultraviolet
divergence in the electron mass, what we observe is the total of the bare mass and the self
energy. Therefore, any calculations should be expressed in terms of the observed mass of the
electron instead of the bare mass. The same comment applies to the fine-structure constant
as we will see later. It turns out that any physical quantities are finite once expressed in terms
of the observed mass and fine-structure constants despite the fact that there are dependence
on the ultraviolet cutoff as well as bare parameters at the intermediate stage of calculations.
This is a general property of renormalizable quantum field theories: all physical quantities
are finite once expressed in terms of observable quantities. Because of this property, one can
use the QED to do precise calculations without worrying about what physics is there at the
energy scale of the ultraviolet cutoff.

Next topic is the wave-function renormalization factor. Following the general discussions,
we calculate

Z−1
2 − 1 = − ∂Σ( 6p)

∂ 6p

∣∣∣∣∣
6p=m

. (35)

Using Eq. (30) again, and paying attention to the fact that p2 = ( 6p)2, we find

Z−1
2 − 1 = − α

4π

∫ 1

0
dx

[
−2(1− x) log

xm2 + (1− x)Λ2 − x(1− x)p2 − iε
xm2 + (1− x)µ2 − x(1− x)p2 − iε

+(−2(1− x) 6p + 4m)

(
−x(1− x)2 6p

xm2 + (1− x)Λ2 − x(1− x)p2 − iε
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− −x(1− x)2 6p
xm2 + (1− x)µ2 − x(1− x)p2 − iε

)]∣∣∣∣∣
6p=m

. (36)

We can drop the first term in the parenthesis because it vanishes in Λ → 0 limit, and also
m2 (µ2) in the numerator (denominator) in the logarithm can be set zero. After a simple
integration, we find

Z−1
2 − 1 = − α

4π

[
2 log

m2

µ2
− log

Λ2

m2
− 9

2

]
. (37)
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