
Final Solutions

1. Standard Model List ten items both on (1) the features you liked about the Standard
Model, and (2) you did not like about the Standard Model. For each of the iterms in (2), add
comments how they may be improved by modifying or extending the Standard Model.

Solutions I’m curious to read your answers!

2. Deep Inelastic Scattering due to Weak Interaction Charged current weak interac-
tion induces the deep inelastic scattering processes `−N → ν`X, `+N → ν̄`X, ν`N → `−X,
¯̀N → `+X for ` = e or µ. Show that the differential cross section is given in the parton
model by

d2σ

dx dy
=
G2
F s

2π

[
(1− y)FCC

2 + xy2FCC
1 ±

(
y − y2

2

)
xFCC

3

]
. (1)

The sign ± is positive for `−, ν`, while negative for `+, ν̄`. The structure functions are given in
terms of the parton distribution functions. For `−p→ ν`X and ν̄`p→ `+X, they are given as
(ignoring both strange and charm quarks which actually are not negligible at present energies
and accuracies)

FCC
2 = 2xFCC

1 = 2x(u+ d̄)(x,Q2), (2)

FCC
3 = 2(u− d̄)(x,Q2), (3)

while for `+p→ ν̄`X and ν`p→ `−X,

FCC
2 = 2xFCC

1 = 2x(d+ ū)(x,Q2), (4)

FCC
3 = 2(d− ū)(x,Q2). (5)

Throughout the problem, we ignore m2
p � s, m2

` � s, and s� m2
W so that we can use Fermi

Hamiltonian.
Finally, discuss how different deep inelastic processes can be used to disentangle different

parton distribution functions. Recall that the `−p→ `−X measures only the linear combina-

tion
(

2
3

)2
(u+ ū) +

(
−1

3

)2
(d+ d̄), while `−d→ `−X measures u+ d+ ū+ d̄. It is commonly

assumed that sea quark distributions are flavor-independent ū = d̄ (which, however, is now
known to be not completely correct).

Solutions One can use either the trace technique or the helicity amplitude to work out the
cross section. With the trace technique, I tend to make mistakes with εµνρσ, and I’d rather
use the helicity amplitude especially that only one helicity combination is relevant. But this
is of course up to your choice. For ν`(k)d(p)→ `(k′)u(p′), where k, k′, p, p′ are four-momenta,
the amplitude is

iM =
GF√

2
ū(k′)γµ(1− γ5)u(k)ū(p′)γµ(1− γ5)u(p). (6)
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With the helicity amplitude technique, it is the easiest to go to the parton-parton CM frame
of the collision, where

k = Ê(1, 0, 0, 1), k′ = Ê(1, sin θ̂ cos φ̂, sin θ̂ sin φ̂, cos θ̂),

p = Ê(1, 0, 0,−1), p′ = Ê(1,− sin θ̂ cos φ̂,− sin θ̂ sin φ̂,− cos θ̂). (7)

We need to consider only the negative helicity states, on which (1− γ5) = 2. The spinors are

then given by
√

2Êχ−, which are

χ−(k) =

(
0
1

)
, χ−(k′) =

 − sin θ̂
2
e−iφ̂

cos θ̂
2

 ,
χ−(p) =

(
1
0

)
, χ−(p′) =

 cos θ̂
2
e−iφ̂

sin θ̂
2

 . (8)

The gamma matrices on these spinors are simply σ̄µ = (1,−~σ). Putting them together, I find
the amplitude

iM = 4
GF√

2

√
2Ê

4

χ−(k′)†σ̄µχ−(k)χ−(p′)†σ̄µχ−(p) = 8
GF√

2
ŝeiφ̂. (9)

This shows that the amplitude is in J = 0 wave only, which makes sense from the helicity
considerations.

Similarly, the amplitude for ν`(k)ū(p)→ `(k′)d̄(p′) is

iM =
GF√

2
ū(k′)γµ(1− γ5)u(k)v̄(p)γµ(1− γ5)v(p′). (10)

The helicity amplitude is then obtained as

iM = 4
GF√

2

√
2Ê

4

χ−(k′)†σ̄µχ−(k)χ−(p)†σ̄µχ−(p′) = 4
GF√

2
ŝ(1 + cos θ̂)e−iφ̂. (11)

In this case, the amplitude is in J = 1 wave only, which also makes sense from the helicity
considerations.

Using the standard formula for the cross sections, with spin average only for the quarks
but not for neutrinos, the differential cross sections are given by

dσ

d cos θ̂
=

{
1

2π
G2
F ŝ (ν`d→ `u)

1
8π
G2
F ŝ(1 + cos θ̂)2 (ν`ū→ `d̄)

(12)

Now we rewrite the kinematical variables in terms of x and y. The proton four-momentum
P µ is related to the parton four-momentum by pµ = xP µ. Therefore, ŝ is simply ŝ = xs. The
y variable is defined by y = (q ·P )/(k ·P ) = (q ·p)/(k ·p) = 1

2
(1− cos θ̂). Therefore, the above

parton-level cross sections give the proton-level cross section

d2σ

dxdy
=

1

π
G2
Fxsu(x) +

1

π
G2
Fxs(1− y)2d̄(x), (13)
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which agrees with the formula in the problem.
For the case of `−p → ν`X, all the cross sections are the same as above except that the

process picks up u(x) and d̄(x) parton distribution function and the average over the lepton
spins would give another factor of 1/2. The formula in the problem misses this factor of 1/2,
as pointed out by a few of you (sorry!). Apart from this factor, the changes d(x) → u(x),
ū(x) → d̄(x) in Eq. (13) gives the formula in the problem. For the processes with the anti-
leptons, the changes d(x) → d̄(x), u(x) → ū(x) etc give the correct result (again up to this
factor of a half).

The electromagnetic DIS processes measure 4(u+ ū) + (d+ d̄) on proton and u+ ū+d+ d̄
on deuteron, we know u + ū, d + d̄ separately. We cannot, however, separate ū from u with
the electromagnetic interations only. ν`p DIS measures d + 1

3
ū while ν̄`p measures u + 1

3
d̄,

where the factor of 1/3 is roughly the average of the (1 − y)2 factor. With these combined
with the electromagenetic DIS, one can separate all four u, d, ū, d̄.

3. Neutrino Oscillations
Let us derive a formula for the neutrino oscillation probabilities in the case of three gener-

ations. In general, the neutrino mass-squared matrix is given (in the basis where the charged
lepton mass is diagonalized) by

M2
ν = U

 m2
1 0 0

0 m2
2 0

0 0 m2
3

U †, U =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 , (14)

where m2
i are three real eigenvalues and U is the unitary diagonalization matrix.

(a) Show that the neutrino oscillation probabilities are given by

P (νµ → νe) =
3∑

i,j=1

UeiU
∗
ejU

∗
µiUµj exp

(
−i

(m2
i −m2

j)c
4L

2h̄cE

)
. (15)

and similarly for other combinations when E � m2
i . Show also that the probabilities

are real (in the sense that it does not have an imaginary part). Also check that the
total probability is one: P (νµ → νe or νµ or ντ ) = 1.

Solution The Eq. (14) tells us that the mass eigenstates are related to the weak eigenstates by
the MNS matrix  |ν1〉

|ν2〉
|ν3〉

 = U †

 |νe〉|νµ〉
|ντ 〉

 . (16)

Solving the equation for the weak eigenstates, we find |νe〉|νµ〉
|ντ 〉

 = U

 |ν1〉
|ν2〉
|ν3〉

 =

 Ue1|ν1〉+ Ue2|ν2〉+ Ue3|ν3〉
Uµ1|ν1〉+ Uµ2|ν2〉+ Uµ3|ν3〉
Uτ1|ν1〉+ Uτ2|ν2〉+ Uτ3|ν3〉

 . (17)
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The neutrino state at t = 0 is a pure νµ:

|νµ〉 = Uµ1|ν1〉+ Uµ2|ν2〉+ Uµ3|ν3〉. (18)

After the propagation over a distance L, the state acquires a phase eipiL/h̄ due to the
momentum eigenvalues

pi =

√(
Ei
c

)2

−m2
i c

2 ' E

c
− m2c4

2Ec
. (19)

(In the class, we used fixed momentum and the difference in the energy eigenvalues.
Either way, you obtain the same result up to corrections of O((mc2)4/E4) which is
completely negligible. If you are really worried about such a difference, you need to
consider the wave packet of neutrinos. For a recent discussion, see Michael Nauenberg,
Phys. Lett. B447, 23-30 (1999), hep-ph/9812441.) Therefore after the propagation
over the distance L, the state is given by

|νµ, L〉 = Uµ1|ν1〉e−im
2
1c

4L/2h̄cE + Uµ2|ν2〉e−im
2
2c

4L/2h̄cE + Uµ3|ν3〉e−im
2
3c

4L/2h̄cE. (20)

I dropped the uninteresting overall phase factor eiEL/h̄c. To determine the probability
that this state is detected as νe, we take the inner product of the above state with

|νe〉 = Ue1|ν1〉+ Ue2|ν2〉+ Ue3|ν3〉. (21)

We find the amplitude

〈νe|νµ, L〉 =
∑
i

UµiU
∗
eie
−im2

i c
4L/2h̄cE. (22)

The probability is simply given by the absolute squared amplitude,

P (νµ → νe) =
∑
ij

UµiU
∗
eiU
∗
µjUeje

−i(m2
i−m

2
j )c

4L/2h̄cE

=
∑
ij

U∗eiUejUµiU
∗
µje
−i(m2

i−m
2
j )c

4L/2h̄cE (23)

(There problem had the complex conjugate of the MNS matrix elements; I’m sorry!).

The probability can be shown to be real by taking its complex conjugate

P (νµ → νe)
∗ =

∑
ij

UeiU
∗
ejU

∗
µiUµje

+i(m2
i−m

2
j )c

4L/2h̄cE, (24)

which is the same as Eq. (23) by interchanging the dummy variables i↔ j.

The total probability P (νµ → νe, νµ, ντ ) is

P (νµ → νe) =
∑
ij

(U∗eiUej + U∗µiUµj + U∗τiUτj)UµiU
∗
µje
−i(m2

i−m
2
j )c

4L/2h̄cE

=
∑
i

UµiU
∗
µi = 1. (25)

We used the unitarity relations U∗eiUej + U∗µiUµj + U∗τiUτj = δij and
∑
i UµiU

∗
µi = 1.
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(b) Check that the above formula reduces to the two-generation formula

P (νµ → νe) = sin2 2θ sin2

(
(m2

2 −m2
1)c4L

4h̄cE

)
(26)

when Ue3 = Uµ3 = Uτ1 = Uτ2 = 0, Ue1 = Uµ2 = cos θ and Ue2 = −Uµ1 = sin θ.

Solution By plugging in the MNS matrix elments given in terms of the angle θ, we find

P (νµ → νe) = sin2 θ cos2 θ

[
2− 2 cos

∆m2c4L

2h̄cE

]
. (27)

Using identities sin 2θ = 2 sin θ cos θ, and 1 − cosχ = 2 sin2 χ/2, we obtain the two-
generation formula.

(c) Show that there is a possible time reversal violation P (νµ → νe) 6= P (νe → νµ), using
the parameterization

U =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (28)

Solution The oscillation probability P (νe → νµ) is given by interchanging e and µ in Eq. (23).
Then the T-violation is given by

P (νµ → νe)−P (νe → νµ) =
3∑

i,j=1

(U∗eiUejUµiU
∗
µj−U∗µiUµjUeiU∗ej) exp

(
−i

(m2
i −m2

j)c
4L

2h̄cE

)
.

(29)
The term in the parentheses is nothing but the imaginary part 2i=(U∗eiUejUµiU

∗
µj). Ob-

viously the imaginary part vanishes for i = j. Therefore, we need to consider only i 6= j
in the sum and drop all terms which do not have e±iδ. We find

P (νµ → νe)− P (νe → νµ)

= 4 sin δ c12s12c
2
13s13c23s23

[
sin

∆m2
12c

4L

2h̄cE
+ sin

∆m2
23c

4L

2h̄cE
+ sin

∆m2
31c

4L

2h̄cE

]
. (30)

Here, ∆m2
ij = m2

i − m2
j . Note that the T-violation vanishes if any one of the angles

vanishes s12, s23 or s13, i.e., all three generations need to be involved in the oscillation.

(d) For anti-neutrinos, the mass-squared matrix is complex conjugated: M2
ν̄ =M2∗

ν . Obtain
the oscillation probabilities for anti-neutrinos and show that there is a possible CP
violation P (ν̄µ → ν̄e) 6= P (νµ → νe).

(e) Show that CPT is always preserved: P (νµ → νe) = P (ν̄e → ν̄µ).
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Solution It is easier to solve (e) first and come back to (d). Because M2
ν̄ = M2∗

ν , the MNS
matrix is also complex conjugated for anti-neutrinos. Then the oscillation probability
P (ν̄µ → ν̄e) can be obtained from Eq. (23) by complex conjugating the MNS matrix
elements,

P (νµ → νe) =
3∑

i,j=1

U∗eiUejUµiU
∗
µj exp

(
−i

(m2
i −m2

j)c
4L

2h̄cE

)
. (31)

The probability we want here P (ν̄e → ν̄µ) then is obtained by interchanging µ and e,

P (νe → νµ) =
3∑

i,j=1

U∗µiUµjUeiU
∗
ej exp

(
−i

(m2
i −m2

j)c
4L

2h̄cE

)
. (32)

Comparing this with Eq. (23), we find they are the same, proving the CPT relation.

Once the CPT relation is proven, the CP-violation is obvious from the T-violation.

Note Future generation of neutrino oscillation experiments shooting neutrinos from a muon
storage ring at Fermilab to Berkeley could probe CP violation if the solution to the solar
neutrino problem turns out to be the Large Mixing Angle MSW solution. See Report
of Neutrino Factory Physics Study Group.

4. Supersymmetric Particles In supersymmetric theories, all matter particles (quarks,
leptons) are associated with their scalar superpartners (scalar quarks, scalar leptons). The
superpartners have exactly the same gauge quantum numbers, but they are complex Klein–
Gordon fields rather than Weyl fermions.

(a) Write down the (gauge-invariant) kinetic term and the mass term for the superpartners
of the left-handed leptons,

L̃2 =

(
ν̃µ
µ̃L

)
. (33)

Solution The kinetic term for a Klein–Gordon field is in general given by

Lkin = (DµL̃)†(DµL̃). (34)

The left-handed sleptons have the same gauge quantum numbers as the left-handed
leptons (1,2,−1

2
). Therefore the covariant derivative is given by

DµL̃ =
(
∂µ + ig′

1

2
Bµ − ig

τa

2
W a
µ

)
L̃. (35)

(b) Calculate the decay rate of Z-boson into a pair of scalar neutrinos ν̃µ.
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Solution The covariant derivative for the sneutrino can be rewritten as (dropping the charged
current terms which involve W 1,2)

Dµν̃ =
(
∂µ + i

e

cW

1

2
Bµ − i

e

sW
W 3
µ

)
ν̃

=
(
∂µ − i

e

sW cW

1

2
(−BµsW +W 3

µcW )
)
ν̃

=
(
∂µ − igZ

1

2
Zµ

)
ν̃. (36)

Since this is of the same form as that of the QED for complex scalar fields, the Feynman
rule is obtained simply by changing e to gZ

1
2

from that of the scalar QED (Peskin–
Schroeder, Problem 9.1). The decay amplitude of the Z → ν̃ν̃∗ is then given by

iM = −gZ
1

2
(pν − pν̄)µεµ. (37)

The helicity summed squared amplitude is simplified by the trick
∑
λ ε

µ
λε
ν∗
λ = −gµν +

qµqν/m
2
Z , and note also the send term vanishes because qµ(pν − pν̄)µ = (pν + pν̄)

µ(pν −
pν̄)

µ = m2
ν̃ −m2

ν̃ = 0. We obtain

∑
λ

|M|2 =
g4
Z

4
m2
Zβ

2, (38)

where β =
√

1− 4m2
ñu/m

2
Z . Using the standard formula for the decay rate with the

spin average factor 1/3,

Γ(Z → ν̃ν̃∗) =
1

3

1

2mZ

β

8π

∑
|M|2 =

αZ
48
mZβ

3. (39)

Here I used the short-hand αZ = g2
Z/4π = α/s2

W c
2
W . Note that this is the same as the

decay rate into neutrinos

Γ(Z → ν̃ν̃∗) =
αZ
24
mZ . (40)

except that it is a factor of two smaller and has β3 dependence.

(c) From the experimental constraint on the invisible Z-width ∆Γinv < 2.0 MeV, place a
lower bound on the mass of the scalar neutrino ν̃µ.

Solution Using α = 1/129, s2
W = 0.231, mZ = 91.18 GeV, I find mν̃ > 43.6 GeV.

(d) Calculate the expected number of events of µ̃L pair production from e+e− annihilation
(LEP-II) with 500 pb−1 integrated luminosity at

√
s = 202 GeV. If 10 events are enough

to claim discovery, what is the discovery reach?

Solution Here I use a calculation by scaling the known cross section. This is what you would do
if you need to know the result quickly. We know that

σpt ≡ σ(e+e− → µ+µ−) =
4πα2

3s
=

86.8 nb

(
√
s/GeV)2

, (41)
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often referred to as the “point cross section.” Having learnt that the scalar pair pro-
duction is a factor of two smaller than the (Weyl) fermion pair production above, it
must be a factor of four smaller than the Dirac fermion pair production. If there were
only photon exchange, the smuon production cross section should be 1

4
σptβ

3. However,
there are both photon and Z exchange, which interfere, and the Z diagram depends
on the electron helicity. The only difference from σpt then is the coupling factors and
the propagators. Given this, it is easy to write down the cross sections for left- and
right-handed electrons separately:

σ(e−Le
+ → µ̃Lµ̃

∗
L) =

1

4
β3σpt

[
1 +

g2
Z

e2

(
−1

2
+ s2

W

)2 s

s−m2
Z

]2

, (42)

σ(e−Re
+ → µ̃Lµ̃

∗
L) =

1

4
β3σpt

[
1 +

g2
Z

e2

(
−1

2
+ s2

W

)
s2
W

s

s−m2
Z

]2

. (43)

Numerically, using mZ = 91.18 GeV,
√
s = 202 GeV, s2

W = 0.231, the square brackets
give 2.28 and 0.31, respectively. The spin averaged cross section then is just the average
of the two:

σ(e−e+ → µ̃Lµ̃
∗
L) =

1

4
β3σpt

2.28 + 0.31

2
. (44)

Finally, we need to recall that α at these energies is close to 1/129 rather than 1/137
and scale σpt accordingly. Putting everything together, we find

σ(e−e+ → µ̃Lµ̃
∗
L) =

1

4
β3 86.2 nb

2022

(
137

129

)2 2.28 + 0.31

2
= 0.777 pbβ3. (45)

With the integrated luminosity of 500 pb−1, we obtain 388β3 events. Requiring we need
at least 10 events for the discovery, we can find smuons up to

mµ̃ <
202

2

√
1−

(
10

388

)2/3

= 96.5 GeV. (46)
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