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1. isothermal halo

The isothermal model of halo assumes the distribution
- - -2
p(x, v) = Nexp((rl—2 (‘I’ - % v ))
This ansatz is called isothermal because of its resemblance to the Boltzmann distribution

p(x,v) = Nexp( (m\I’ o ;’2)) — N e-EIT

with the identifications k T = m o and the single-particle energy E = v2 —mWY. (The griavitational potential energy is
V =m¥.) But this is not just a resemblance. Any phase distribution functlon given in terms of the Hamiltonian is automati-
cally a static solution to the Boltzmann equation, and furthermore an exponential form (Boltzmann distribution in thermal
equilibrium) is known to be a particularly robust solution under small perturbations. Therefore, it is a good guess for a
stable configuration of the halo.

The spatial density is given by the integration upon the velocities,
2

p() = f‘ﬂ vNexp( o (¥ = 3| = @ro?) N et
With the boundary condition p(0) = pg, 27 0'2)3/2 N ¥/ = Po, and hence
p(r) = py eFO~YONT* | Namely,
¥(r) = ¥(0) + o log L2
The Poisson equation is then

L d (2 d 52 log p(’)) —47G p(r).

7 odr dr
Now usmgthe variables p=p/pog,r=ro7,ro =V902/4nGpy ,

o2

—2737( flog,T))=—47er0p

o

or
+ 47 O frlogp) = —rg* ¥ p=-9p

Wrmng out the derlvatlves,

2 Fa k- (5] =99
subject to the boundary condition p(0) = 1. We also impose p'(0) = Oto avoid a %singularity in the above equation at the

origin. Then we find p" (0) = —

solution = NDSolve [ {2

If[x=0, -3, y'[x]/x] . (y”[x] ) [y‘ [x]
yIx] yIx] yIx]
y[0] =1, y'[0] =0}, y, {x, O, 100}]

2
) ] == _9Y[x]l

{{y » InterpolatingFunction[{{0., 100.}}, <>]}}
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LogLogPlot [Evaluate[y[x] /. solution], {x, O, 100}, PlotRange -» {0.00001, 1}]
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2
LogLogPlot[; , {x, 0.001, 100},

x2

PlotRange » {0.00001, 1}, PlotStyle -» RGBColor[1l, O, O] ]
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Show|[%, %%]
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Indeed, the asymptotic behavior is given approximately by p = %

This behavior can also be understood analytically. Going back to the differential equation
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LB L2 P 2R 2
2r%+r %—r (%) =-97¥p N
and assume the asymptotic behavior p A7 ". Keeping only the leading terms in 1/7,
2(-m)+(-n)(-n—-1)—n2=-9AF"
If n < 2, there is only a trivial solution A =0. If n>2, -2n+n(n+1)— n? =0 and hence n = 0, a contradiction. Therefore,

n=2,and then A = %

The rotation speed of stars embedded inside the halo is determined by the usual balance between the gravitational force and
the centrifugal force,

2
m = 4V _ g dY 2 dpldr

r dr dr o)
Therefore,
WV=—gtLl 42 - 252

p dr p

Note that the asymptotic rotation speed is found using the asymptotic solution obtained above,
Vel = -2 H=2)F ! =202, and hence v, = V2 0.

The fact that the rotation speed approaches a constant instead of falling as r~!/?

("flat rotation curve"), which is reproduced in this model.

is the most surprising feature of the data

y'[x]
y[x]

Plot[Sqrt [Evaluate[-x /. solution]], {x, 0.001, 100}, PlotRange - {0, 2}]

20 40 60 80 100

- Graphics -
2. Gravitational Microlensing

It is presented in a separate PDF because I couldn't insert figures into Mathematica notebook.



