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1 Two-Body Phase Space

The two-body phase is the basis of computing higher body phase spaces.
We compute it in the rest frame of the two-body system, P = p1 + p2 =
(
√
s, 0, 0, 0).

∫
dΦ2(p1, p2) =

∫ d3p1

(2π)32E1

d3p2

(2π)32E2

(2π)4δ(P µ − pµ1 − p
µ
2)

=
∫ d3p1

(2π)32E1

d3p2

(2π)32E2

(2π)4δ(
√
s− E1 − E2)δ(~p1 + ~p2)

=
∫ d3p

(2π)32
√
m2

1 + ~p2

1

2
√
m2

2 + ~p2
(2π)δ

(√
s−

√
m2

1 + ~p2 −
√
m2

2 + ~p2

)
.

=
∫ p2dp d cos θ dφ

(2π)32
√
m2

1 + p2

1

2
√
m2

2 + p2
(2π)δ

(√
s−

√
m2

1 + p2 −
√
m2

2 + p2

)
.

(1)

It takes some work to solve the delta function. The end result is that

p =

√
s

2
β̄ (2)

with

β̄ =

√
1− 2(m2

1 +m2
2)

s
+

(m2
1 −m2

2)2

s2
. (3)

Then the delta function becomes

δ
(√

s−
√
m2

1 + p2 −
√
m2

2 + p2

)
=

δ(p− β̄
√
s/2)

(p/E1) + (p/E2)
. (4)

Therefore,

∫
dΦ2(p1, p2) =

∫ d cos θ dφ

(2π)3

p2

4E1E2

2π
1

(p/E1) + (p/E2)

∣∣∣∣∣
p=β̄
√
s/2,Ei=

√
m2
i+p

2
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=
∫ d cos θ dφ

(2π)2

p

4(E1 + E2)

∣∣∣∣∣
p=β̄
√
s/2,Ei=

√
m2
i+p

2

=
β̄

8π

∫ d cos θ

2

dφ

2π
. (5)

It is also useful to remember

E1 =

√
s

2

(
1 +

m2
1

s
− m2

2

s

)
, (6)

E2 =

√
s

2

(
1 +

m2
2

s
− m2

1

s

)
. (7)

It is worthwhile looking at two special cases. One is when two masses are
equal m1 = m2 = m. Then

β̄ =

√
1− 4m2

s
=

√
1− m2

E2
. (8)

This is nothing but β = v/c; hence the notation. However, for m1 6= m2, two
particles have different velocities and β̄ cannot be interpreted as the velocity
either. The other is when one of the masses vanishes, m2 = 0. Then

β̄ = 1− m2
1

s
. (9)

This is nothing but 2E2/
√
s because E2 = |~p2| = |~p1|.

2 Decomposing Phase Space into Two-Body

Ones

It is often useful to decompose multi-body phase space integral into a product
of two-body phase space integrals. As an example, let us decompose a four-
body phase space into a produce of three two-body phase spaces. This is
very useful if one considers a production of two particles, each of which
subsequently decays into two-body state.

The full four-body phase space is given by

∫
dΦ4 =

∫ 4∏
i=1

d3pi
(2π)32Ei

(2π)4δ(P − p1 − p2 − p3 − p4). (10)
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We first insert two four-momentum integrals with q12 = p1 + p2 and q34 =
p3 + p4,

1 =
∫ d4q12

(2π)4

d4q34

(2π)4
(2π)4δ(q12−p1−p2)θ(q0

12)(2π)4δ(q342−p3−p4)θ(q0
34). (11)

The step function θ(x) is 1 for x > 0 and 0 for x < 0. Even though the step
function eliminates a half of the integral over q0

12 and q0
34, the delta function

ensures that they are given by the sum of two energies and hence its support
is in the half that is retained. In addition, we also insert

1 =
∫ ds12

2π

ds34

2π
2πδ(s12 − q2

12)2πδ(s34 − q2
34). (12)

With the delta functions, we can regard s12 as “mass squared” of the “parti-
cle” whose four-momentum is qµ34. Then one can perform the energy integral
and find ∫ d4q12

(2π)4

ds12

2π
(2π)4δ(q12 − p1 − p2)θ(q0

12)2πδ(s12 − q2
12)

=
∫ ds12

2π

d3q12

(2π)32E12

(2π)4δ(q12 − p1 − p2). (13)

Here, we used the delta function s12 − q2
12 = (s12 + ~q2

12) − E2
12 = 0 and

eliminated E12 = q0
12 with the condition by the step function q0

12 > 0. In
the last expression, it is understod that the four-dimensional delta function

contains q0
12 = +

√
s12 + ~q2

12. We do the same with q34 as well. Putting all of
the above together, we find∫

dΦ4 =
∫ 4∏

i=1

d3pi
(2π)32Ei

ds12

2π

d3q12

(2π)32E12

ds34

2π

d3q34

(2π)32E34

(2π)4δ(q12 − p1 − p2)(2π)4δ(q34 − p3 − p4)(2π)4δ(P − q12 − q34). (14)

Now, note that the integration volumes d3pi/(2π)32Ei is Lorentz invariant.
Therefore, we can carry out these integrals in any frame we wish. In partic-
ular, we take the “rest frame” of q12 to perform p1 and p2 integrals. In this
frame, we denote the momenta as p̂1,2, and we know that∫

dΦ2(p̂1, p̂2) =
∫ d3p̂1

(2π)32Ê1

d3p̂2

(2π)32Ê2

(2π)4δ(Ê12 − Ê1 − Ê2)δ(~̂p1 + ~̂p2)

=
β̄12

8π

∫ d cos θ̂12

2

dφ̂12

2π
, (15)
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with

β̄12 =

√√√√1− 2(m2
1 +m2

2)

s12

+
(m2

1 −m2
2)2

s2
12

. (16)

The same is true with the p3 and p4 integrals, where the “rest frame” of q34

can be chosen. (This different reference frame is also denoted with the same
hatted variables. Any hatted variables that refer to 1 and 2 are in the rest
frame of q12, while those that refer to 3 and 4 are in the rest frame of q34.)
Therefore, the whole four-body phase space is now reduced to∫

dΦ4 =
∫ ds12

2π

d3q12

(2π)32E12

ds34

2π

d3q34

(2π)32E34

(2π)4δ(P − q12 − q34)

β̄12

8π

∫ d cos θ̂12

2

dφ̂12

2π

β̄34

8π

∫ d cos θ̂34

2

dφ̂34

2π
. (17)

On the other hand, the integrals over q12 and q34 can be done as if each of
them is a “particle” of mass

√
s12 and

√
s34, and are done in the rest frame

of P (which is the lab frame for a symmetric collider and we do not put a
hat on the variables in this frame). Therefore,∫

dΦ2(q12, q34) =
∫ d3q12

(2π)32E12

d3q34

(2π)32E34

(2π)4δ(P − q12 − q34)

=
β̄

8π

∫ d cos θ

2

dφ

2π
, (18)

where

β̄ =

√
1− 2(s12 + s34)

s
+

(s12 − s34)2

s2
. (19)

Putting everything together, we find∫
dΦ4 =

∫ ds12

2π

ds34

2π

β̄

8π

∫ d cos θ

2

dφ

2π

β̄12

8π

∫ d cos θ̂12

2

dφ̂12

2π

β̄34

8π

∫ d cos θ̂34

2

dφ̂34

2π

=
∫ ds12

2π

ds34

2π
dΦ2(q12, q34)dΦ2(p̂1, p̂2)dΦ2(p̂3, p̂4). (20)

3 Narrow-Width Approximation

The narrow-width approximation uses the fact that the amplitude through
a pole of unstable particle decouples as

M =
∑
ha,hb

M(i→ a+ b)M(a→ 1 + 2)M(b→ 3 + 4)

(s12 −m2
a + imaΓa)(s34 −m2

b + imbΓb)
. (21)
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For an unstable scalar, it is obvious. For an unstable fermion, we use the fact
that 6p+m =

∑
h=±1/2 uh(p)ūh(p) if the four-momentum is on-shell p2 = m2

and has positive energy p0 > 0. If it is one-shell with the negative energy
p0 < 0, 6p+m = −∑h=±1/2 vh(−p)v̄h(−p). Of course, the four-momentum is
not exactly one-shell, but we ignore the off-shellness in the numerator. Then
one of the spinors is regarded as a part of the production amplitude, the
other of the decay amplitude. The same idea applies to vector bosons, where
we use −gµν + qµqν

m2 =
∑
h=±1,0 ε

µ
h(q)εν∗h (q).

When we integrate the squared amplitude on the four-body phase space,
we use the two-body decomposition (so far not summed over initial and final
state helicities)

σ =
1

2sβ̄i

∫
dΦ4|M|2

=
1

2sβ̄i

∫ ds12

2π

ds34

2π
dΦ2(q12, q34)dΦ2(p̂1, p̂2)dΦ2(p̂3, p̂4)∣∣∣∣∣∣

∑
ha,hb

M(i→ a+ b)M(a→ 1 + 2)M(b→ 3 + 4)

(s12 −m2
a + imaΓa)(s34 −m2

b + imbΓb)

∣∣∣∣∣∣
2

=
1

2sβ̄i

∫ ds12

2π

ds34

2π
dΦ2(q12, q34)dΦ2(p̂1, p̂2)dΦ2(p̂3, p̂4)∣∣∣∑ha,hbM(i→ a+ b)M(a→ 1 + 2)M(b→ 3 + 4)

∣∣∣2
[(s12 −m2

a)
2 +m2

aΓ
2
a][(s34 −m2

b)
2 +m2

bΓ
2
b ]

=
1

2sβ̄i

∫
dΦ2(q12, q34)dΦ2(p̂1, p̂2)dΦ2(p̂3, p̂4)

1

2maΓa

1

2mbΓb

∣∣∣∣∣∣
∑
ha,hb

M(i→ a+ b)M(a→ 1 + 2)M(b→ 3 + 4)

∣∣∣∣∣∣
2

(22)

In the last step, we assumed that the amplitudes depend very little on s12, s34

within their widths. When the detailed distributions are not of interest, the
interference term among different helicities of the decaying particle oscillates
over the phase space and drops out. Therefore, the total cross section reduces
to

σ =
1

2sβ̄i

∫
dΦ2(q12, q34)dΦ2(p̂1, p̂2)dΦ2(p̂3, p̂4)

5



1

2maΓa

1

2mbΓb

∑
ha,hb

|M(i→ a+ b)M(a→ 1 + 2)M(b→ 3 + 4)|2

=
1

2sβ̄i

∫
dΦ2(q12, q34)

∑
ha,hb

|M(i→ a+ b)|2B(a→ 1 + 2)B(b→ 3 + 4).

(23)

In the last step, we used the definition of the partial width

Γ(a→ 1 + 2) =
1

2ma

∫
dΦ2(p̂1, p̂2) |M(a→ 1 + 2)|2 (24)

and the branching fraction

B(a→ 1 + 2) =
Γ(a→ 1 + 2)

Γa
. (25)

4 Three-Body Phase Space

Three-body decays are often important. Examples include µ → eν̄eνµ, ω →
3π, H → WW ∗. In these examples, no two-particle combination hits a pole
of an unstable particle. Nonetheless the phase space can be worked out the
same way we did earlier.

Using the two-body phase space decomposition just once, we find∫
dΦ3 =

∫ ds23

2π
dΦ2(p1, q23)dΦ2(p2, p3)

=
∫ ds23

2π

d cos θ1

2

dφ1

2π

β̄1(
m2

1

s
, s23
s

)

8π

d cos θ̂23

2

dφ̂23

2π

β̄23(
m2

2

s23
,
m2

3

s23
)

8π
.(26)

Often we are interested in a decay of unpolarized particles (spin averaged),
and the distribution is isotropic. Then the overall rotation of the system
(cos θ1, φ1) integrals can be dropped. It is convenient to define the polar
angle θ̂23 relative to the direction −~p1. Then the azimuthal dependence on
φ̂23 is also trivial as it corresponds to the overall rotation of the system around
the axis −~p1.

The variables s23 and cos θ̂23 are often rewritten with the energy fractions
x1,2,3. (Or, more traditional variables are m2

12 = s12 and m2
23 = s23 called

Dalitz variables.) First,

x1 =
E1√
s/2

= 1 +
m2

1

s
− s23

s
. (27)
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Second, using the assumed isotropy, we can make q23 point along the positive
z-direction,

p1 =

√
s

2
(1 +

m2
1

s
− s23

s
, 0, 0,−β̄1), (28)

q23 =

√
s

2
(1− m2

1

s
+
s23

s
, 0, 0, β̄1). (29)

Therefore, the boost factor from the rest frame of q23 to the center-of-
momentum frame is given by

γ =
E23√
s23

=

√
s

2
√
s23

(
1− m2

1

s
+
s23

s

)
, (30)

γβ =

√
s

2
√
s23

β̄1 . (31)

The four-momentum of the particle 2 in the rest frame of q23 is

p̂2 =

√
s23

2

(
1 +

m2
2

s23

− m2
3

s23

, β̄23 sin θ̂23, 0, β̄23 cos θ̂23

)
. (32)

The energy of the particle 2 in the center-of-momentum frame is then

E2 =

√
s23

2

[
γ

(
1 +

m2
2

s23

− m2
3

s23

)
+ γββ̄23 cos θ̂23

]
, (33)

and hence

x2 =

√
s23√
s

[
γ

(
1 +

m2
2

s23

− m2
3

s23

)
+ γββ̄23 cos θ̂23

]
. (34)

Let us specifically study the case of massless particles m1,2,3 = 0. Per-
forming all the integrals for overall rotations, we have∫

dΦ3 =
∫ ds23

2π

1

8π

(
1− s23

s

)
d cos θ̂23

2

1

8π
. (35)

The energies of the particles 1 and 2 are

x1 = 1− s23

s
, (36)

x2 =

√
s23√
s

[ √
s

2
√
s23

(
1 +

s23

s

)
+

√
s

2
√
s23

(
1− s23

s

)
cos θ̂23

]

=
1

2

[(
1 +

s23

s

)
+
(

1− s23

s

)
cos θ̂23

]
=

1

2
(2− x1 + x1 cos θ̂23). (37)
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Therefore, the three-body phase space becomes simply∫
dΦ3 =

s

128π3

∫ 1

0
dx1

∫ 1

1−x1

dx2 . (38)

Obviously, x1 + x2 + x3 = 2 and the phase space is a triangle on this plane
in the three-dimensional space.

Note that the matrix element |M|2 in general depends on xi in a non-
trivial way. The expression there is only the phase space. For instance, in
the decay H → WW ∗ → W`ν`, the virtual W propagator prefers m`ν` to be
as close as possible to mW , giving a non-trivial xW dependence.

With finite masses, the edges and vertices of the triangle get rounded.
For details, there is a PDG review article.

5 Decaying Particles in the Lab Frame

It is important to understand the kinematics of the decay products of a
particle of mass M decaying in flight.

For a isotropic two-body decay, we start with the simple two-body phase
space. To bring it to the lab frame, we boost the four-momentum vector
from the rest frame

p1 =
M

2
(1 +

m2
1

M2
− m2

2

M2
, β̄ sin θ̂, 0, β̄ cos θ̂). (39)

Here, we used our liberty to choose the origin of the azimuth such that the
y-component of the vector vanishes. To go to the lab frame, we boost it with

γ =
E

M
, β =

√
1− γ−2 . (40)

The energy of the particle 1 in the lab frame is then

E1 =
M

2

[
γ

(
1 +

m2
1

M2
− m2

2

M2

)
+ γββ̄cos θ̂

]
. (41)

The important point here is the linear relationship between E1 and cos θ̂. In
particular, for the isotropic decay, the distribution is flat in −1 ≤ cos θ̂ ≤ 1,
and therefore we obtain a flat distribution in E1 for the range(

1 +
m2

1

M2
− m2

2

M2

)
− ββ̄ ≤ 2E1

E
≤
(

1 +
m2

1

M2
− m2

2

M2

)
+ ββ̄. (42)
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In particular for the massless case m1 = m2 = 0, it is particularly simple,

1− β ≤ 2E1

E
≤ 1 + β. (43)

It is useful to define the energy fraction x1 = E1/E, and we find a flat
distribution in 1−β

2
≤ x1 ≤ 1+β

2
.

For an isotropic three-body decay into massless particles, we focus on the
particle 1 (say electron in the decay τ− → e−ν̄eντ ) whose phase space is

∫
dΦ3 =

M2

128π3

∫ 1

0
dx̂1x̂1

∫ 1

−1

d cos θ̂

2
. (44)

The four-momentum of the particle 1 in the rest frame is

p̂1 =
M

2
x̂1(1, sin θ̂, 0, cos θ̂). (45)

In the lab frame, its energy is

E1 = Ex1 =
M

2
γx̂1(1 + β cos θ̂). (46)

For simplicity, we consider the case β ≈ 1. Then we can stick in a delta
function and obtain∫

dΦ3 =
M2

128π3

∫ 1

0
dx̂1x̂1

∫ 1

−1

d cos θ̂

2

∫
dE1δ(

M

2
γx̂1(1 + cos θ̂)− E1)

=
M2

128π3

∫
dE1

∫ 1

0
dx̂1x̂1

∫ 1

−1

d cos θ̂

2

δ(cos θ̂ + 1− 2E1/(Mγx̂1))

Mγx̂1/2

=
M

128π3γ

∫
dE1

∫ 1

E1/Mγ
dx̂1

=
M

128π3γ

∫
dE1

(
1− E1

Mγ

)

=
M2

128π3

∫
dx1(1− x1). (47)

This is a simple downward triangular distribution.

9


