129A HW # 2 (due Sep 19)

- 1. The momentum is described by the differential operator **p** = −iħ ∇ on Schrödinger wave functions ψ(x). (1) Check that the wave function ψ_p(x) = e^{ip̄·x̄/ħ} is an eigenstate of the momentum **p**ψ_p(x) = pψ_p(x). Such a wave function is called a plane wave. (2) Using the Schrödinger equation iħ ∂/∂t ψ_p(x) = <u>p</u>²/_{2m}ψ_p(x), check that the time dependence of this wave function is ψ_p(x, t) = ψ_p(x, 0)e^{-ip̄²t/2mħ} = exp(i(p̄·x̄ - p̄²/_{2m}t)/ħ). (3) The plane wave is usually written in terms of the frequency ω and the wave vector k̄ as exp(i(k̄ · x̄ - ωt)). What is the frequency and wave vector of the Schrödinger plane wave? (4) Check that the planes with constant phase factor (p̄·x - p̄²/_{2m}t)/ħ = constant moves with the "phase velocity" v̄_{phase} = p̄/_{2m}. This is not a velocity we expect for a particle of mass m and momentum p̄. (5) Usually, wave functions are not pure plane waves, but their superpositions (wave packets). The peak in a wave packet does not move with the phase velocity but rather with the group velocity: v̄_{group} = ∂ω/∂k̄. Check that this reproduces the expected velocity of the particle.
- 2. A relativistic generalization of a plane wave is given by $\psi_p(x,t) = e^{i\vec{p}\cdot\vec{x}/\hbar iEt/\hbar} = e^{-ip^{\mu}x_{\mu}/\hbar}$. Note that it has a manifestly Lorentz invariant form (a pleasant surprise!). The only difference from the non-relativistic wave function in **1**. is that we now use $E = \sqrt{(mc^2)^2 + c^2\vec{p}^2}$ instead of $\vec{p}^2/2m$. (1) What is the phase velocity \vec{v}_{phase} ? Do you notice something strange with it? (2) What is the group velocity $\vec{v}_{group} = \partial E/\partial\vec{p}$? What is its physical meaning?
- 3. The Lorentz-covariant generalization of angular momenta has six quanitities: M^{µν} = x^µp^ν x^νp^µ. (1) Check that M¹² is nothing but the orbital angular momentum L^z. (2) Write down the expression of M⁰ⁱ (i = 1, 2, 3) for a free particle of mass m and velocity v. (3) Show that M⁰ⁱ is conserved, *i.e.* (∂/∂t)M⁰ⁱ = 0. (Hint: v = 0 for a free particle.) (4) For a system of interacting particles with coordinates x_a, the sum M⁰ⁱ_{tot} = Σ_a M⁰ⁱ_a is conserved (independent of time) just like the total energy E_{tot} = Σ_a E_a, the total momentum Pⁱ_{tot} = Σ_a pⁱ_a, and the total angular momentum J^z_{tot} = Σ_a M¹²_a etc. Write down the time-dependence of the "center-of-energy" Xⁱ_{CE} = (Σ_a x_aE_a)/E_{tot} in terms of the total energy, total momentum and the initial value of M⁰ⁱ_{tot}. (5) What is the non-relativistic limit of Xⁱ_{CE}? Neglect v/c completely.