129A HW # 7 (due Nov 14)

Neutral K mesons are very interesting particles. K^0 meson consists of $d\bar{s}$ quarks, and $\overline{K^0}$ meson of $s\bar{d}$, both $J^P = 0^-$ states just like pions. Under charge conjugation, they are interchanged, $C|K^0\rangle = |\overline{K^0}\rangle$ and vice versa.

- 1. Take helicities of neutrinos and anti-neutrinos as examples to argue why CP may be a good symmetry of weak interaction.
- 2. Show that the following states are eigenstates of CP operator and determine their CP eigenvalues: $|K_1\rangle = (|K^0\rangle |\overline{K^0}\rangle)/\sqrt{2}, |K_2\rangle = (|K^0\rangle + |\overline{K^0}\rangle)/\sqrt{2}.$
- **3.** When neutral kaons decay into two or three π^0 , pions are all produced in the *S*-wave (*i.e.*, in L = 0 state) in the kaon rest frame. Determine *CP* eigenvalues of $|\pi^0\pi^0\rangle$ and $|\pi^0\pi^0\pi^0\rangle$ states. Assuming conservation of *CP*, which $K_{1,2}$ state decays into two (three) π^0 ?
- 4. The one which decays into two π^0 is much shorter lived than the other one which decays into three π^0 because a kaon has barely enough mass to produce three π^0 and hence such process occurs slowly. Look up the booklet to find out the lifetimes of long-lived neutral kaon K_L and short-lived neutral kaon K_S .
- 5. Suppose a strong interaction process creates a neutral K-meson. For instance, suppose $pn \rightarrow \Lambda p$ + neutral K-meson. Which K-meson is produced?
- 6. The created neutral K-mesons (as above) with energies 10 GeV are 50-50 mixture of K_L and K_S . How long beam line do you need to make sure that the fraction of K_S in the kaon beam is less than 10^{-5} ?
- 7. You have made sure that K_S fraction is less than 10^{-5} , but have seen $\pi^0 \pi^0$ final state with a fraction of about 10^{-3} from the decay of the neutral kaons. Argue that CP is violated in the neutral kaon system.