
Midterm Solution Set

1. (a) From the Kamiokande paper, it is actually not completely clear if the
angles they quote are measured from forward or backward. Despite
what I’ve said to some of you, I feel that they are probably measured
from forward, i.e., θ = 0 corresponds to a positron which goes along the
same direction as the original neutrino. But I think both are equally
valid interpretation of the paper, and accept answers based on either
interpretation.

First of all, one can neglect the mass of the neutrino in the calculation
of kinematics for the ν̄ep → e+n scattering. Judging from the energies
listed in the table, we can even ignore the mass of the electron. Then
the four-momenta of ν̄e, p, e

+, n can be written as

pν =
Eν
c

(1, 0, 0, 1) (1)

pp = mpc(1, 0, 0, 0) (2)
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Ee
c

(1, sin θ, 0, cos θ) (3)

pn =
1

c
(Eν +mpc

2 − Ee,−Ee sin θ, 0, Eν − Ee cos θ). (4)

Since

p2
nc

2 = m2
nc

4 = (Eν +mpc
2 − Ee)2 − (Ee sin θ)2 − (Eν − Ee cos θ)2

= m2
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4 + 2Eempc
2 + 2Eν(mpc

2 −Ee(1− cos θ)), (5)

we can solve for Eν :

Eν =
m2
nc

4 −m2
pc

4 + 2Eempc
2

2mpc2 − 2Ee(1− cos θ)
. (6)

If the angle is defined from backward, 1− cos θ is replaced by 1 + cos θ.
Using this formula, we can calculate the neutrino energies for all 12



events observed by Kamiokande.

event t(sec) Ee(MeV) θ(deg) Eν(MeV) Eν(MeV)
1 0 20.0 18 22.2 21.3
2 0.107 13.5 15 15.2 14.8
3 0.303 7.5 108 8.84 8.89
4 0.324 9.2 70 10.6 10.6
5 0.507 12.8 135 14.2 14.4
6 0.686 6.3 68 7.66 7.63
7 1.541 35.4 32 39.4 36.9
8 1.728 21.0 30 23.3 22.4
9 1.915 19.8 38 21.9 21.2
10 9.219 8.6 122 9.94 10.0
11 10.433 13.0 49 14.6 14.4
12 12.439 8.9 91 10.3 10.3

Here, the first Eν column corresponds to θ measured from backward,
and the second from forward.

(b) Using only the first 9 events, we require that the arrival times for the
energy range between 7.63–36.9 MeV (events 6 and 7) should not differ
more than 2 seconds. For a small neutrino mass, the velocity can be
written as

v = c

√
1− m2c4

E4
' c

(
1− m2c4

2E4

)
, (7)

and the time to reach the earth as

t ' L

c

(
1 +

m2c4

2E4

)
. (8)

Here, L = 50 kpc is the estimated distance between the Earth and
SN1987A, and hence t is as long as 150 thousand years. After this long
journey from SN1987A, the neutrinos with different energies arrived at
the Earth within 2 seconds, which implies that the neutrinos must be
very close to being massless. The difference between the arrival times
for a neutrino with Emin = 7.63 MeV and Emax = 36.9 MeV is given by

∆t ' L

2c
m2c4
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1

E4
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− 1

E4
max

)
. (9)



By requiring ∆t < 2 sec, we find

m < 6.6 eV/c2 (10)

N.B. This analysis neglects error bars in angle and energy measure-
ments, and also does not utilize the theoretical calculation of the burst
profile and hence is rather crude. For a more detailed discussion, see,
e.g., W. D. Arnett and J. L. Rosner, Phys. Rev. Lett. 58, 1906 (1987).
Their result does not differ much from our crude analysis. You may
have used a slightly different requirement from mine; it is OK as long
as the order of magnitudes of the upper bound are the same.

2. (a) p→ e+π0, baryon number or electron number. (b) µ− → e−e−e+, muon
number of electron number. (c) n → pνeν̄e, electric charge. (d) τ− → µγ,
tau number or muon number. (e) n→ pµ−ν̄µ, energy. (f) K0 → µ+e−, muon
number or electron number. (g) µ− → π−νµ, energy.

3. (a) ρ → ππ, ω → π+π−π0. The charges of ππ in ρ decay are not specified
in the booklet. The booklet assumes that you can figure out the rest of
this problem.

(b) Since ρ has spin 1 and π’s don’t, the relative orbital angular momentum
of ππ system must be L = 1, i.e., P -wave. The angular wavefunction
of the ππ system therefore is given by the spherical harmonics Y 1

m with
m = −1, 0, or 1. The important feature of Y l

m is that they are even
functions for l even and odd for l odd. Therefore, L = 1 case gives an
odd function for the relative coordinate, and hence the wave function
changes its sign under the interchange of two πs. On the other hand,
πs are bosons and hence their wave functions should not change their
signs under the interchange of two pions. Therefore, the two-pion wave
function must be |π+π−〉− |π−π+〉 (anti-symmetric) to compensate the
sign from Y 1

m. However, this construction gives an identically vanishing
wavefunction for π0π0 state, and hence ρ→ π0π0 cannot occur.

(c) By adding two I = 1, the possibilities for the total isospin are I = 0, 1,
or 2. Since I = 1 has three states, there are 3× 3 = 9 states in total,
in agreement with the sum of number of states 1 (I = 0), 3 (I = 1)
and 5 (I = 2). The number of symmetric states can be counted as
(3 · 4)/2! = 6, which coincides with the number of states for I = 0, 2,
and the number of anti-symmetric states 3C2 = (3 · 2)/2! = 3 with



the number of states for I = 1. Therefore, I = 0, 2 have symmetric
wavefunctions and I = 1 anti-symmetric wavefunctions for the isospin
part. The angular wavefunction must hence be symmetric for I = 0, 2
and anti-symmetric for I = 1 to make the total wavefunction symmetric
under the intechange of two πs as required by Bose statistics. The
relative orbital angular momentum must therefore be even for I = 0
and odd for I = 1.

(d) ω meson has spin 1 and I = 0. If ω were to decay into ππ state, the
conservation of isospin requires that ππ state has I = 0 as well. Then
the result from the previous problem implies that L has to be even. On
the other hand, the conservation of angular momentum requires L = 1
and contradicts with the other requirement. This is why ω cannot decay
into ππ state.

(e) The ω → ππ must be caused by an effect which does not respect isospin.
One candidate is the electromagnetic interaction. In fact, ω = (uū +
dd̄)/
√

2, and a photon can be emitted from quarks or anti-quarks to
create a pair of quarks and they can combine into two π’s. (Another
possibility is that the small mass difference between u and d quarks
violates isospin and results in a small mixing between ρ0 and ω0. Then
ω contains a small I = 1 component and it can decay into ππ.)

N.B. The isospin wavefunctions for I = 1 are indeed anti-symmetric,
and can be written as

|1, 1〉 =
1√
2

(
|π+π0〉 − |π0π+〉

)
, (11)

|1, 0〉 =
1√
2

(
|π+π−〉 − |π−π+〉

)
, (12)

|1,−1〉 =
1√
2

(
|π0π−〉 − |π−π0〉

)
. (13)

Note that there is no |π0π0〉 consistent with the discussion in problem
(b).

4. (a) Out of six possible states, totally symmetric combination of three quarks
can be counted as (6 · 7 · 8)/3! = 56.

(b) The octet baryons have spin 1/2, and the total number of states is
8 · 2 = 16. The decouplet baryons have spin 3/2, and the total number
of states is 10 · 4 = 40. The grant total is 56, and hence the octet and



decouplet exhaust all possible states constructed from three quarks (in
S-wave, as implicitly assumed).

(c) By acting J−, we find

√
3|∆++, 1/2〉 = |u↑u↑u↓〉+ |u↑u↓u↑〉 + |u↓u↑u↑〉. (14)

The |∆++, 1/2〉 state is given by 1/
√

3 of the r.h.s above.

(d) By acting I− on the above equation, we find

3|∆+, 1/2〉 = |u↑u↑d↓〉+ |u↑u↓d↑〉 + |u↓u↑d↑〉
+|u↑d↑u↓〉+ |u↑d↓u↑〉 + |u↓d↑u↑〉
+|d↑u↑u↓〉+ |d↑u↓u↑〉 + |d↓u↑u↑〉. (15)

The |∆+, 1/2〉 state is given by 1/3 of the r.h.s above.

(e) The inner product of |∆+, 1/2〉 and |p, 1/2〉 states is given by

〈p, 1/2|∆+, 1/2〉 =
1

3

1

3
√

2
(2 + 2 + 2− 1− 1− 1− 1− 1− 1) = 0.

(16)
Since eigenstates of Hamiltonian with different eigenvalues must be or-
thogonal to each other, this result is necessary. The check of total sym-
metry can be done as follows. There are 3! = 6 possible permutations of
the three quarks. The form given in the problem is already manifestly
symmetric under the (three) cyclic permutations. The other three per-
mutations are interchange of (1,2), (2,3) and (3,1) quarks. It is easy to
check that the wave function does not change under these permutations.
Therfore, the wavefunction given here is totally symmetric. Together
with the totally anti-symmetric color wavefunction, the quarks have
totally anti-symmetric wavefunction as required by Fermi statistics.

(f) The eigenvalue of I3 operator is given by the sum of I3 of individual
quarks, (1/2)+(1/2)+(−1/2) = 1/2. Acting I+ “raises” the only down
quark to the up quark,

I+|p, 1/2〉 =
1

3
√

2

(
2|u↑u↑u↓〉+ 2|u↑u↓u↑〉+ 2|u↓u↑u↑〉 − |u↑u↓u↑〉

−|u↓u↑u↑〉 − |u↑u↓u↑〉 − |u↑u↑u↓〉 − |u↑u↑u↓〉 − |u↓u↑u↑〉
)

= 0. (17)



(g) The check is similar to the previous problem.

(h) According to the assumption, the magnetic moment operator is given
by

~µ =
∑
i

2
ei

2mq
~si, (18)

where ei = (2/3)e for up quarks and −(1/3)e for down quarks. ~si are
spin operators for each quark. The expectation value does not vanish
only for µz, and is given by

〈p, 1/2|µz |p, 1/2〉 = 2
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3
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]
=

eh̄

2mq

=
eh̄

2mp
3. (19)

The booklet quotes µ = 2.8µN where µN is the nuclear magneton
eh̄/2mp (see 1. PHYSICAL CONSTANTS). Given the crudeness of
the approximation (i.e., the assumption of free quarks despite strong
gluon interactions), this agreement is remarkable.

N.B. One can repeat the same analysis for the neutron. The neu-
tron wavefunction can be obtained from that of the proton by inter-
changing up quarks and down quarks. Therefore the magnetic mo-
ment is obtained by interchaning 2/3 and −1/3, and it is easy to find
eh̄

2mn
(−2). This again agrees remarkably well with the value in the book-

let: µ = −1.9µN .


