129B HW # 4 (due Feb 20)

1. The coupling of the Z-boson to each fermion species is given by

$$\frac{e}{\sin\theta_W\cos\theta_W}(I_3 - Q\sin^2\theta_W) \tag{1}$$

where $I_3 = +1/2$ for u_L , ν_L , $I_3 = -1/2$ for d_L , e_L , and $I_3 = 0$ for u_R , d_R , e_R . Qis the electric charge in the unit of the proton charge. Use the value of $\sin^2 \theta_W$ given in the "PHYSICAL CONSTANTS" table, and work out the ratios of the partial widths $Z \to \bar{u}_R u_L$, $\bar{u}_L u_R$, $\bar{d}_R d_L$, $\bar{d}_L d_R$, $\bar{\nu}_R \nu_L$, $\bar{e}_R e_L$, $\bar{e}_L e_R$. Discuss the consistency with the observed Z branching fractions into $\ell^+ \ell^-$, "invisible" (ν_e, ν_μ, ν_τ), "hadrons" (u, d, s, c, b), and its breakdown. (Forget the rest starting from $\pi^0 \gamma$.)

2. The couplings of Z and W bosons to the Higgs boson condensate can be also calculated starting from the gauge principle. These couplings generate the masses m_Z and m_W as

$$m_W = \frac{1}{2}gv, \qquad m_Z = \frac{1}{2}\frac{g}{\cos\theta_W}v. \tag{2}$$

Check that the ratio of the observed masses m_W/m_Z is consistent with $\cos \theta_W$. Also calculate g using $\sqrt{2}G_F = 1/v^2$ and G_F as given in "PHYSICAL CON-STANTS." Then check if $e = g/\sin \theta_W$ holds. It actually doesn't. What if you use $\alpha = e^2/4\pi = 1/129$ rather than 1/137?

optional

a. Derive that the coupling of the Z-boson is given as in Eq. (1) by starting from the Dirac equation (without the mass)

$$i\gamma^{\mu} \left(\partial_{\mu} - igW^{a}_{\mu} \frac{\tau^{a}}{2} - ig'YB_{\mu}\right)\psi = 0.$$
(3)

Drop the $W^{1,2}_{\mu}$ bosons and deal with each components of ψ (or ψ itself if it is a singlet). Then ψ is an eigenstate of $I_3 = \tau^3/2$. Rewrite it in terms of $g = e/\sin\theta_W$, $g' = e/\cos\theta_W$, $W^3_{\mu} = Z_{\mu}\cos\theta_W + A_{\mu}\sin\theta_W$, $B_{\mu} = -Z_{\mu}\sin\theta_W + A_{\mu}\cos\theta_W$, and $Q = I_3 + Y$. Also check that the coupling of A_{μ} is indeed eQ.